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INTRODUCTION 

Ab a member of the staffs of the Home Economics Divisions 

at Cornell University and Iowa State College the author has 

been interested in textile laundry for a number of years. Tex­

tile laundry furnishes a variety of problems of physico-

chemical character, especially of surface chemical character, 

few of which have been investigated from a fundamental point of 

view. The present work was undertaken to obtain a better 

understanding of one of the most pressing of these problems, 

namely, the kinetic mechanism of the action of surface active 

agents In depressing boundary tensions and accelerating wetting 

of fabrics. 

The cleaning of textile fabrics can be divided into three 

parts: wetting, soil removal, and soli suspension (49). The 

cleaning process involves both kinetic and equilibrium con­

siderations. The penetration of cleaning solution into the 

fabric requires a kinetic treatment; soil removal has both 

kinetic and equilibrium aspects, but soil suspension Involves 

only equilibrium considerations. Each of these processes la 

dependent on the surface active agent used. 

Fischer and Gans ( 24) define a surface active agent as a 

compound which In relatively small amounts greatly modifies the 

physical properties of a heterogeneous system by adsorption at 

the surface. The adsorption of such a compound at the surface 



www.manaraa.com

2 

of a liquid brings about a large reduction in the surface ten­

sion of the solvent. Surface active agents can be divided into 

classes by means of the functions they perform, that is, 

whether they are primarily wetting agents, detergents, or dis­

persing and emulsifying agents. 

Schwartz and Perry (48) explain the great reduction in the 

surface tension of surface active agents very well. A pure 

liquid can decrease its free surface energy only by diminishing 

its surface area. In addition a solution may do so by concen­

trating in the surface the molecular species with the smaller 

free surface energy. Surface tension or surface free energy 

results from unbalanced forces at the surface. Lateral forces 

of attraction on surface molecules cancel each other. However, 

forces which pull a surface molecule into the interior are not 

offset by equivalent attraction in the opposite direction. No 

two species of molecules are likely to have equal force fields; 

thus, in a solution the species which has the higher force of 

attraction will leave the surface at a higher rate than would 

be predicted from the relative numbers present. As this move­

ment continues, the molecules with the smaller force fields 

are concentrated at the surface. Thermal agitation acts to 

prevent the surface from becoming completely bare of molecules 

with the higher attractive forces. 

Molecules or ions which are surface active are often com­

posed of both hydrophlllc and hydrophobic groups (43). In the 
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surface of an aqueous solution these moleoulee or lone are 

oriented with the hydrophllic part in the water and the hydro­

phobic part in air. This orientation is caused by the greater 

attraction between water and the hydrophllic part than between 

water and the hydrophobic group. One would expect adsorption 

at a solution-fiber interface to resemble that at the solution-

air interface. Work done by others supports this idea. 

Bartell and co-workers (7, 8a, 9) showed that interfacial 

tensions at the Interfaces formed between a series of organic 

liquids and water were related to the interfacial tensions be­

tween the same organic liquids and polar solids. Comparison 

of work by Ward and Tordal (58) on aliphatic alcohols and acids 

at aqueous solution-air interfaces with work of Hansen and 

Craig (29) on the adsorption of the same organic compounds from 

aqueous solutions on carbon black also Indicates similar be­

havior at solution-air and solution-carbon Interfaces. From 

this one would expect information on the solution-air interface 

to be helpful In understanding the adsorption at the solution-

fiber interface. 

The energy changes involved in the various types of 

wetting are as follows (37): 

Spreading - A F 

Adhesional - à F 

Immersional - 6 F 
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The symbols have the following meanings: 

is the surface tension of a solid 

"/sl is the solid-liquid interfacial tension 

Yl le the surface tension of a liquid 

In adhesional wetting a solid-air and a liquid-air inter­

face are replaced by a solid-liquid boundary. The free energy 

of adhesional wetting will be more negative the lower the solid-

liquid interfacial tension and the larger the surface tensions 

of the liquid and solid. 

As spreading wetting takes place, the solid surface is 

covered by a film of liquid so that during wetting the solid-

air boundary disappears and solid-liquid and liquid-air inter­

faces are formed. The free energy of spreading wetting is 

therefore more negative when both the surface tension of the 

liquid and the interfacial tension are small. 

If the wetting takes place by immersion, the liquid sur­

face tension has no effect on the wetting, but a low inter-

facial tension promotes wetting. 

The first two types of wetting, adhesional and spreading, 

depend upon the liquid surface tension but the wetting free 

energy changes are affected in opposite directions by a de­

crease in this tension. In spreading wetting such a decrease 

lowers (makes more negative) the wetting free energy. 

Fowkes (26) showed that although smooth walled capillaries 

are wetted by immersion, the process which controls the wetting 
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of cotton fibers is spreading wetting. He says that penetra­

tion of solution into a bundle of yarns is from the side of 

the thread in a direction perpendicular to the length of the 

fibers and that after entry into the yarn the solution travels 

parallel to the fibers. Thus the wetting of fabrics would in­

volve both surface and interfacial tensions and the wetting 

free energy change would be made more negative by decreasing 

both of these quantities. 

As the word "wetting" has been used in the literature, it 

has had two meanings, one involving free energy changes and the 

other kinetics. This is unfortunate as it has led to much mis­

understanding. Other authors, for example, Bartholeme and 

Schafer (10), have appeared surprised that the surface active 

agents which cause the fastest penetration of fabric by liquid 

are not always the ones with the lowest surface tension. 

Apparently they do not comprehend that the surface tension as 

usually measured and the free energy relations apply to equi­

librium conditions, whereas the wetting to which they refer is 

a rate of wetting, a matter of kinetics. 

In this work the word "wetting" will be reserved for the 

wetting under equilibrium conditions and "rate of wetting" will 

be used in the kinetics problem. With this clarification of 

meaning it is easily understood why equilibrium surface tension 

cannot be used to predict rate of wetting. On the other hand, 

since rate of lowering of surface tension and rate of wetting 
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are both dependent on the rate of adsorption of surface active 

molecules at an interface, it is reasonable to expect that the 

rate of wetting of fabric and the rate of lowering of surface 

tension may be related. 

When the surface tensions of fresh surfaces of detergent 

solutions in laundry concentration ranges are measured by 

ordinary methods, the values obtained are very nearly the 

equilibrium values. Apparently the adsorption takes place 

very rapidly, that is, within a very few seconds. In lower 

concentrations the surface tension falls more slowly so that 

common methods can be used to give surface tensions at dif­

ferent times. However, two difficulties appear. The less 

concentrated solutions are not of as much interest in the 

problem of wetting and, when the common methods of measuring 

surface tension are used, it is impossible to determine the 

exact age of the surface. 

Lord Rayleigh (40) described a method which can be used to 

determine surface tensions of very young surfaces of liquids 

which also permits estimation of surface ages. The method in­

volves measurements on a stream of liquid issuing from a non-

circular orifice. Although the method has many advantages for 

use in studying the rate of surface tension depression, the 

method of calculation used by others does not give accurate 

values for the surface tension near the orifice. Unfortunate­

ly, this is the region which is of greatest Interest in this 
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case. The error in calculation enters because the theory calls 

for a uniform velocity over the cross section of the Jet, 

whereas in reality the surface and bulk velocities may be quite 

different, especially near the orifice. 

Two methods are commonly accepted for determining rate of 

wetting; skein (23a) and canvas disc (50) wetting tests. When 

these tests are performed under the same conditions, compari­

sons can be made of the wetting rate of solutions. However, 

the tests give no insight Into the mechanism of wetting and 

they do not allow one to predict the wetting rate of an agent 

from its other properties. A more fundamental, lees empirical 

measure which correlates with rate of wetting would be of great 

value in selecting wetting agents and in producing molecules 

tailor-made for desirable equilibrium or kinetic wetting 

properties. 

The purposes of the present study were as follows i 

1. To refine the vibrating Jet method for measuring sur­

face tensions, adapting it for use with non-constant 

velocity profiles, so that accurate boundary tensions 

can be determined at accurately known times for very 

young surfaces. 

2. To determine the dependence of surface tensions of 

aqueous detergent solutions on time and concentration 

for young surfaces, and to propose a mechanism to 

explain the observed dependence. 
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3. To determine the effect of detergent concentration 

and type on fabric sinking times and to propose a 

mechanism to explain the observed dependence. 

4. To relate, If possible, the effect of detergents on 

the fabric sinking times to their effect on the rate 

of surface tension depression. 
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REVIEW OF LITERATURE 

Surface Active Agents 

Surface active agents, even in dilute solutions, greatly 

alter the surface tension of the liquids in which they are dis­

solved. The change is always a decrease rather than an in­

crease. Molecules which exhibit surface activity in aqueous 

solution are composed of a non-polar, hydrophobic part and a 

polar, hydrophllic part (48, p. 5)• Common hydrophobic groups 

are linear hydrocarbon chains, benzene rings, or benzene rings 

to which alkyl groups have been attached. Among the polar 

groups are the carboxyl, sulfate and the sulfonate radicals 

and the ether and amide linkages (48, p. 15)• 

Surface active agents are often classed according to their 

use; wetting agents, detergents, emulsifying agents, dispersing 

agents, and others (48, p. 11). A single compound might be 

used for more than one purpose as there is much overlapping of 

the functions (a fact rarely appreciated by the user). 

Fischer and G-ans ( 24) say that a variety of terms have 

been associated with the subject of surface active agents. 

"Wetting agent" is the term used to indicate improved spreading 

of a solution over an initially repellent surface. A pene­

trating agent increases the degree or the speed of passage of 

liquid into a porous solid. If the agent is used for cleaning 
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or soil removal, It Is called a detergent. An emulsifying 

agent Is one which stabilizes the dispersion of one liquid In 

another even though the two are Immiscible. 

Another method of classification divides the compounds 

into anionic, cationic and nonlonic agents (48, p. 9). The 

anionic group is most common and best known, soap Itself being 

the classic example. As the name implies it is the anion in 

this class which is surface active and the cation has little 

effect on the activity. In contrast, the cationic agents are 

compounds containing a cation which is composed of both hydro­

phobic and hydrophllic groups. In the nonlonic compounds the 

solubilizing group is often made up of a number of oxygen, 

nitrogen, or sulfur atoms. 

When certain properties of solutions of surface active 

agents are studied over a range of concentrations, discontinu­

ities in the relationship of the property to the concentration 

are observed. McBain (34) first proposed the formation of 

aggregates of molecules at the concentration where the dis­

continuity is observed. The name micelle is given to the 

aggregate and the lowest concentration at which micelles form 

is called the critical micelle concentration. Adsorption at 

the surface occurs above and below the critical micelle con­

centration, but in either case it is only the single ions or 

molecules which are adsorbed (48, p. 289). 
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It has been suggested (19) that molecules which show much 

branching do not form micelles as readily as less branched or 

straight chain molecules. In other words, branching increases 

the critical micelle concentration. In the concentration range 

where micelles are present, the concentration of single ions 

would be greater for a poor micelle former than for a good one. 

Similarly, since it is the single ions or molecules which are 

adsorbed, surface active agents which are poor micelle formers 

can be expected to be good, that is, fast, wetting agents. 

Among the anionic surface active agents the most common 

ones are salts of fatty acids, alkyl sulfates, and alkyl aryl 

sulfonates. Comparison of the wetting ability of the three 

groups shows that the sulfonates are the best wetting agents, 

that is, cause fastest wetting; the soaps from fatty acids, 

t h e  p o o r e s t ;  a n d  t h e  s u l f a t e s ,  i n t e r m e d i a t e  ( 5 3 ) .  

In the ordinary commercial preparation of the alkyl aryl 

sulfonates a mixture of isomers is formed, all of which exhibit 

more or less branching of the carbon chain (52). In contrast 

salts of fatty acids and alkyl sulfates usually have straight 

carbon chains. This may explain the differences in wetting 

ability among the three groups. 

Change in Free Energy in Wetting 

As is indicated in the Introduction, the change in free 

energy for wetting is dependent on the surface and interfacial 
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tensions. In the oase of the vetting of fabric the solution-

fabric interface is of Interest, but, unfortunately, the 

boundary tension at this interface is not directly measurable. 

Considerable evidence has been amassed, however, to indicate 

that equilibrium behavior at the solid-liquid interface closely 

parallels equilibrium behavior at the liquid-air interface. 

Bartell and Greager (7), in studying the wetting of pig­

ments, found a relationship between adhesion tension yg - V 

and liquid absorption. The latter is the amount of liquid re­

quired to wet a given amount of powder using the Gardner-

Coleman technique. Adhesion tension can be obtained from the 

contact angle of the liquid on the solid and the surface 

tension of the liquid. 

yLoos Ô = Yq - Ysl = AgL 

Bartell and Herehberger (8a) wished to compare liquid ab­

sorption values with interfacial tensions for the pigment-

organic liquid pairs under consideration. These interfacial 

tensions themselves were not measurable, but the authors 

reasoned that because the pigments and water are both polar 

the interfacial tensions obtained from measurements of the 

series of organic liquids in contact with water ought to fall 

in the same order as the interfacial tensions of the liquids 

contacting the pigments. They found that a plot of liquid 
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absorption va. water-organic liquid interfacial tension gave a 

eerlee of straight lines (one for each pigment), provided there 

was zero contact angle. They concluded that the interfacial 

tensions at the pigment-organic liquid interfaces were in the 

same order ae those at the corresponding water-organic liquid 

interfaces. 

Osterhof and Bartell (37) tabulated the energy quantities 

associated with wetting a series of solids and the surface or 

Interfacial tension involved. They suggested that relative 

values of solid-liquid interfacial tensions for a series of 

liquids against one particular solid might serve to measure 

wetting. Becauee these tensions are not directly measurable, 

they suggested that, as a substitute, adhesional tension be 

used ae a measure of wetting. 

A comparison of Hansen and Craig's data (29) on adsorption 

of aliphatic alcohols and acids on carbon black with the sur­

face tensions as reported by Ward and Tordal (58) supports the 

hypothesis that solute molecules which lower the surface ten­

sion also lower the interfacial tension at a polar-non-polar 

interface. 

Since experimental evidence suggests a close parallel in 

equilibrium behavior at solid-liquid and liquid-air interfaces, 

it appears reasonable to suspect that such a parallel also 

exists between the kinetic behaviors at these interfaces. This 

idea furnishes the broad basis for seeking a correlation 
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between rates of wetting and of surface tension depression. 

Such a correlation would be extremely useful, for detailed 

studies of rates of surface tension depression capable of sup­

porting quantitative mechanistic theories appear to be within 

practical range of existing experimental techniques, while this 

is not true of solid-liquid interfacial tensions. 

Decrease in Surface Tension with Time 

For many years it has been known that the surface tensions 

measured on newly formed surfaces of some solutions were higher 

than the equilibrium values. The instant the new surface is 

formed, the surface has the same concentration as the bulk of 

the solution. For dilute aqueous solutions there are so few 

solute molecules present Initially in the surface that one 

would expect the surface tension to be nearly that of water 

and even for more concentrated solutions the number of solute 

molecules in the surface initially would be small. However, 

as solute molecules are adsorbed in the surface, the surface 

tension decreases, finally reaching the equilibrium value. 

Many authors have reported such a change in surface tension 

with time. 

In 1907 Milner (36a) measured the change in surface tension 

of sodium oleate solutions by the capillary rise method. He 

found that although the adsorption was completed in a period 
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of a few minutes for more concentrated solutions, several hours 

passed before the surface tension of dilute solutions reached 

equilibrium. He attributed the delay in reaching equilibrium 

to the time required for solute molecules to diffuse into the 

surface. 

Ghosh and Nath (27) followed the changes in surface ten­

sion of solutions of dyes and other complex organic compounds 

with time. They found that variation of surface tension was 

not regular but that maxima and minima were observed. 

Lottermoser (33) helped to explain the minima which Gosh 

and Nath observed. He reported a study of the surface tensions 

of solutions of salts of fatty acids. If carbon dioxide was 

admitted to the surface of the solution, the surface tension 

reached a minimum and then increased slowly. However, when 

carbon dioxide was excluded, the surface tension did not rise 

above the minimum. If the surfaces were stirred after equilib­

rium was reached, the solutions regained their low surface ten­

sions in less than one minute. No explanation was given for 

the rapid recovery of the equilibrium value. 

In the discussion which followed Lottermoser'e paper Adam 

(l) cited work he had done with alkyl pyridinium and alkyl 

trimethyl ammonium bromides. These compounds would be un­

affected by presence of carbon dioxide. In the absence of 

added salt the surface tension of dilute solutions, less than 

0.025#, fell slowly, reaching an equilibrium value between 30 
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and 36 dynes after several days. In contrast solutions as 

concentrated as 0.1/6 reached a minimum value in a very few 

minutes. 

Adam attributed the change In surface tension to aging of 

the surface, not aging of the solution, because the surface 

tension determined on freshly blown bubbles In the bulk of the 

solution was the same regardless of the age of the solution and 

regardless of the surface tensions indicated by bubbles which 

had been blown previously and now exhibited lower surface ten­

sions than initially. 

Adam and Shute (2) gave a more complete account of their 

experiments and results a few years later, but they still of­

fered no explanation for the slow fall in surface tension. 

Bond and Puis (13) offered the first quantitative theory 

of the surface tension depression kinetics. They assumed a 

diffusion controlled process and presented the following rela­

tionships between surface tension and time: 

y -y- = rk\fk 
- Yjo 

The surface tension at any given time is Y ; Y0 and ** are 

the surface tensions initially and at equilibrium. X = 

whlcl1 D Is the diffusion constant and S is the 

ratio of surface to bulk concentration at equilibrium. 
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In arriving at the surface tension-time relationship given 

above, Bond and Puis used the G-ibbs adsorption theorem, q = 

— T h i s  r e l a t i o n s h i p  a p p l i e s  o n l y  t o  d i l u t e  s o l u t i o n s .  
RT dc 
In particular it does not apply in the region where the surface 

tension is constant, or nearly so, as the concentration changes. 

Their treatment of the diffusion problem was also intuitive 

rather than rigorous. 

Bond and Puis used an oscillating Jet to measure surface 

tension. However, they could see only four or five waves along 

the stream. They made no attempt to correct their figures for 

difference in flow rates between the bulk and the surface of 

the Jet. As a result, their figure can not be relied upon. 

McBain, Vinograd, and Wilson (35) used an elaborate film 

balance to study the decrease in surface tension of lauryl 

sulfonic acid over periods up to an hour. They offered no 

theory to explain the change in surface tension. 

Tartar, Slvertz, and Reitmeier (55) followed the surface 

tension of sodium alkyl sulfonates over long periods of time, 

100-150 hours. Although they were seeking an understanding of 

the process by which surface tension changed with aging of the 

surface, they commented that their experiments did not clarify 

the process. They did note, however, that below the critical 

micelle concentration equilibrium was reached more rapidly with 

increase in concentration. 
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Ruyeeen (46) reported that the surface tension of saponin 

solutions reached a minimum within four to five hours and the 

value remained constant for ten to 24 hours. Later irregulari­

ties he attributed to vaporization and hydrolysis. 

In studying saponin solutions Boutaric and Berthier (14) 

measured the surface tension from the surface age of two min­

utes to two hours. The rate law which appeared to fit their 

data 

was only slightly different from that of Bond and Puis, the 

main difference being the exponent on t. 

Dognon and Gougerot (21) studied the surface tensions of 

sodium sulfolaurate, sodium oleate, and sodium glycocholate. 

These compounds offer considerable variation in rigidity of 

film and speed of orientation of solute molecules in the sur­

face. From their data they suggested the law 

X - 7a, -at 
e 

To — Too 

y  — y» 

y o — y oo 

This is equivalent to the equation proposed by Bond and Puis 

(13) except that the constant a is less specific than the 
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ô itô ant in the earlier law. Dognon and Qougerot claimed that 

tfiëlr law, with the square root of t, gave a better fit for all 

of the compounds tested by them and that it gave a better fit 

to the data obtained by Boutaric and Berthier than when the 

first power of t was used. They pointed out that the agreement 

was least good when the solute molecules gave rigid films or, 

at least, oriented themselves slowly in the film. The authors 

claimed that there was no physical basis for picking the square 

root of time. However, if the lowering of the surface tension 

is diffusion controlled, one would expect the square root of t 

term, Just as Bond and Puis suggested. Instead of accepting 

the law involving the square root of time Dognon and Gougerot 

pointed out that Boutaric and Berthier's expression is that of 

a monomolecular reaction and presented arguments used to arrive 

at this expression. Because it is adsorption at the surface 

which causes the change in surface tension, the surface covered 

is related to the decrease in surface tension. The rate of 

adsorption is proportional to the rate of covering the surface 

with surface active molecules and to the rate of increase of 

the fraction of the surface covered. This is also proportional 

to the fraction of the surface not covered. 

t • # - '<1 -e > 

"where s is the surface covered and 9 is the fraction of the 

surface covered. Integration gives 
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1 —  ̂ — fl—8.Î 
1 - 6>. " e 

©e le the Initial value of 6 and le not zero. These authors 

also asserted that the Initial surface tension might be dif­

ferent from that of pure water because surface active molecules 

would be dispersed In the fresh surface Just as they were In 

the rest of the solution. 

The fraction of the surface covered Is expressed In terms 

of surface tension as follows: 

0 - JLz—I and 1-0 =  ̂ °° y w - /» rw -

When these values are substituted Into the rate equation, It 

becomes 

Y -Yc  00 - z e-at 

where / may not be equal to Yw. 

This law Implies two hypotheses. 

1. The surface pressure Is proportional to the surface 

covered by the solute molecules, or In other words, 

the surface film Is fluid. The proportionality would 

not be expected to be true If the orientation of the 

molecules Is slow or If the film Is rigid. 
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2. The rate of adsorption Is proportional to the re­

maining free surface. There is no evidence to indi­

cate whether or not this is true. 

Since the data of Dognon and Gougerot did not fit this law, 

they proposed that the rate is proportional to the remaining 
th 

free surface raised to the n power. 

if- - a(l - 0 )n 

After integration and substitution, the equation becomes 

(/-/«» )1-n - ( r0 - y<0 )1-n - at 

The authors found that, for films in which the molecules 

oriented themselves practically instantaneously, at short times 

the data fit the equation well for n = 2, but the agreement 

was less good for longer times. For materials giving rigid 

films in which the molecules orient slowly the value of n 

appeared to be near 3 but the fit was not good for either 

long or short times. 

In answering Dognon and Gougerot, Boutaric and Berthier 
_ JT 

(15) quoted the integrated equation as X - Zw = ( ~fQ - ̂  )e~ . 

To obtain this equation Boutaric and Berthier assumed that n in 

the differential equation above was one. They also used the 

square root rather than the first power of the time, but they 
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said there is no reason to choose the exponent for t to be 

in its place they proposed to determine what values the ex­

ponent takes under different circumstances. They found that 

for the bile salts they used in their tests the exponent varied 

from 1.13 for 0.10 g./liter to 0.33 for 1 g./liter. They 

offered no explanation for this variation. 

In 19̂ 3 Addison began a series of articles on the prop­

erties of freshly formed surfaces (3-6). Although he obtained 

data on the decrease in surface tension with time, he did not 

discuss it in relation to rate laws. 

At the same time that the first of Addison's results 

appeared, Ward and Tordai (56) reported that diffusion could 

not be the controlling factor in the decrease in the surface 

tension with time. Their reason was that the decrease would 

be much faster, by a factor of 10? to 10̂ , if it were diffusion 

controlled. They proposed that diffusion to the surface must 

be followed by a process of high activation energy. From their 

work in decreasing the surface area of a film, they concluded 

that there is an activation energy for desorption as well as 

for adsorption. 

In two articles in 1945 Ross (44, 45) compared the theory 

of Bond and Puis based on thermodynamics to that of Doss (22) 

which is based on kinetics. Doss considered only the diffusion 

to the surface and ignored any movement out of the surface. 

For that reason the treatments of Bond and Puis on one hand 
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and Does on the other can agree only when diffusion from the 

surface is negligible. 

In some cases Rose found that the data fit the equation 

A somewhat different mechanism is proposed by Ward and 

Tordai (57). They defined the region directly below the sur­

face and a few molecular diameters thick as the subsurface. 

In the initial stages of the formation of the adsorbed layer, 

solute molecules diffuse from the bulk to the subsurface more 

slowly than they pass from the subsurface to the surface. This 

assumes that equilibrium is established instantaneously between 

the surface and the subsurface. Ward and Tordai claimed the 

instantaneous achievement of equilibrium because initially the 

surface is nearly empty and every molecule arriving at the sur­

face is likely to find an empty site and be adsorbed. The 

concentration of the subsurface drops to zero almost immediate­

ly. 

and in other cases a better fit was obtained from 

r - ra (/,-%, )e"at 



www.manaraa.com

24 

As adsorption continues, the chance that a molecule of 

solute will arrive at a portion of the surface already occupied 

increases. These molecules will remain in the subsurface and 

as the concentration increases, some of them will diffuse back 

into the solution. Eventually the concentration of subsurface 

and bulk of solution become equal. 

Ward and Tordai suggested two sets of equilibrium condi­

tions which would simplify obtaining a rate expression: if 

subsurface concentration could be known, then diffusion into 

and out of the subsurface could be calculated; or if the sur­

face and subsurface were in equilibrium, the subsurface con­

centration could be known from surface tension measurement. 

These authors said that neither Rose nor Doss included back 

diffusion from the subsurface in their theoretical treatments 

and they mistakenly assumed the concentration immediately 

below the surface was equal to the bulk concentration at all 

times. Ross made a further error in assuming polymolecular 

films. 

Although Ward and Tordai agreed with the theory which Bond 

and Puis set forth, they claimed that the integrated form of 

the equation is incorrect. In deriving their own value for 

the surface concentration Ward and Tordai arrived at a complex 

and involved equation which must be evaluated by graphical 

integration. Values for the diffusion constant obtained from 

the rate equation should agree with corresponding values from 
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other sources only if the activation energy for entering the 

surface is zero or small. However in applying their treatment 

to Addison's data for alcohols in water, they obtained values 

for diffusion constants which their theory could not explain. 

They suggested that the lack of fit could be attributed to the 

fact that the value Addison quoted as the equilibrium surface 

tension was not the true equilibrium value. 

Bur elk (16-I9a) has reported several studies in which he 

has used the vibrating Jet technique to measure the rate of 

lowering of surface tension of detergent solutions. He has 

discussed rate of lowering in relation to foaming and deter-

gency and has discussed the effect of pH and added electro­

lytes on the rate of lowering. However, he has never attempted 

to formulate a rate law which would account for the decrease 

in surface tension; his data were also obtained without proper 

consideration of applicability of the vibrating Jet equations 

or methods of surface age estimation. 

Bartholome1 and Schafer (10) studied both the wetting of 

fabric by canvas disc wetting tests and the time dependence of 

surface tension. They found that speed of wetting of fabric 

was not related to equilibrium surface tension. For the re­

agents used equilibrium surface tensions were reached only 

after a matter of hours or days. The authors found that their 

data were represented by the equation 
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a 

where a and b are constante. Evidently a = /0 - Yoa ; in 

addition Bartholome and Schafer asserted that 

(D is the diffusion constant; L, the constant for two dimen­

sional phase equilibrium; T, absolute temperature ; k, 

Boltzman1 s constant.) No effort was made in their paper to 

Justify this assertion, but by comparing their equation with 

that of Bond and Puis, it was found that the equations were 

essentially identical to terms first order in t̂ , and it is 

therefore presumed that they obtained it by an intuitive 

argument of similar character. 

These authors consider the reaction to be diffusion con­

trolled and to have no energy barrier. Immediately after a 

new surface is formed the concentration of solute near the 

surface falls a maximum amount. As time passes, material dif­

fuses into the region near the surface bringing the concentra­

tion In that region up to the concentration of the Interior 

of the solution and providing more solute molecules to be ad­

sorbed into the surface. The dependence of surface tension on 

time can be found from the relationship between surface 

b = ( t0 - To, ) ir*(2ooLkTD*)™1 
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concentration and surface tension on one hand and the rate of 

diffusion on the other. The former quantity the authors 

claimed could be obtained from measurement of the spreading 

pressure with a Langmulr balance. This method would not be 

available for more readily soluble materials. 

Lange (32) continued with the equation Bartholome'pro-

posed, pointing out that, when t = b , - y = a/2. 

Thus b2 represents the time required for the surface tension 

to fall half way to equilibrium. Lange called the angle of 

the initial slope In a plot of Y vs /T equal to , and he 

used tan ft 

as a measure of the rate of fall of surface tension. He found 

that the ranking of a/b and the wetting time followed the same 

order. He pointed out that since many wetting agents have 

similar equilibrium surface tensions, values for a for those 

wetting agents would not differ appreciably and that most of 

the variation in the ratio of a/b comes from differences In b. 
2 

However, he observed that the wetting time was related to b . 

Since b itself is proportional to the concentration, a plot of 

log of the wetting time vs. log of the concentration should be 
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linear with elope equal to -2; Lange found that for the eleven 

wetting agents he used the data fit this line well. 

Ward and Tordai (59) studied adsorption at liquid-air 

interfaces to determine the rate controlling factor. In 

elaborating on their statements of several years earlier they 

claimed that diffusion would supply solute molecules to the 

surface faster than they are adsorbed and therefore diffusion 

could not be the rate-controlling process. There is evidence 

that dimers are present in solutions of some surface active 

agents and it has been suggested that decomposition of these 

dimers at the surface would determine the rate of adsorption. 

However, Ward and Tordai asserted that there are sufficient 

monomers present to fill the surface without any of the dimers 

decomposing. On the other hand they claimed that only mole­

cules which collide with the surface with sufficient energy 

to clear a hole for themselves in the surface are adsorbed. 

Their data are in agreement with their proposed expression, 

based on the Boltzman distribution of energy. 

Rldeal and Sutherland (42) began a discussion of the 

factors which affect rate of surface tension depression by 

suggesting that the process is either governed chiefly by 

diffusion or else by an energy barrier to surface entry. 

Calculations based on their data and on Addison's would indi­

cate that surface tension lowering is dependent on the orifice 

used. They suggest that there is movement of solute to the 
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surface because of flow of the liquid as well as by diffusion 

and that movement of liquid within the Jet depends upon the 

following: 

1. The entrance to the orifice. 

2. The length and form of the pipe which forme the 

orifice. 

3. The exit of the orifice. 

4. The pressure of fluid surrounding the Jet. 

5. The oscillations of the Jet. 

6. The spreading pressure of the adsorbed surface 

active agent. 

The authors considered these six points and their effect on 

the movement of solute from point to point in the Jet. 

Data of Rldeal and Sutherland and of Addison for n-heptanol 

solutions indicate that surface tension decreases faster than 

can be accounted for by diffusion alone. However, diffusion 

of 3-methyl-l-butanol supplies solute faster than it Is ad­

sorbed. Rldeal and Sutherland use this as evidence for an 

energy barrier to entrance of solute molecules into the sur­

face and they claim that a similar barrier would also exist for 

the heptanol molecules. To over-ride the effect of this 

barrier, they suggest the effects of liquid motion discussed 

earlier in their paper. 
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Methods of Measuring Rates of Surface Tension Depression 

Practically all the common methods of measuring equilib­

rium surface tension have also been used to obtain non-

equilibrium values. In order to measure rate of change of 

surface tension, information concerning the age of the surface 

as well as the surface tension itself must be known for each 

measurement. Most of the methods used heretofore do not allow 

both pieces of information to be known accurately. 

Milner (36a) used capillary rise to determine surface ten­

sion. In order to obtain a new surface he forced the liquid to 

overflow at the top of the capillary. Since the times involved 

were relatively long, several minutes to several hours, a small 

error in zero time would not seriously affect the results. 

However, in narrow tubes the amount of surface active agent in 

the liquid film which slowly drained back into the tube would 

affect the non-equilibrium surface tension values obtained and 

the apparent rate of decrease of surface tension. Error would 

also result because the height of the liquid in the capillary 

tube varied with time. 

Tartar and his co-workers (55) used a similar method, 

subject to the same errors. Since the period of time which 

their observations covered was 100-150 hours, even a large 

absolute error in zero time would have little effect on the 
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results. However, error from the liquid draining from the 

sides of the capillary back into the surface would be present. 

Four investigators used the pull on a ring or a plate to 

measure the surface tension. Ghosh and Nath (27) and Lotter-

moser (33) made use of a DuNuoy tenslometer or a similar 

instrument. Ruyssen (46) and Dognon and Gougerot (21) obtained 

their data by means of the Wilhelmy plate method. With these 

methods it is not possible to determine zero time for formation 

of the surface with any degree of accuracy. This le partly be­

cause in most methods of producing a new surface the entire 

surface would not be formed at the same instant and partly 

because additional surface is formed during the measuring 

process. The first cause would not give a large relative 

error if long times were involved, but there would be no way 

of decreasing the error associated with the formation of new 

surface during the measurement. 

Other methods such as drop weight (Ward and Tordai (56) and 

Quintin and Biro (39)), pendant drop (Ward and Tordai (56)), 

sessile bubble (Adam and Shute (2)) and ( Tartar and others (55)), 

maximum bubble pressure (Adam and Shute (2)) and the film bal­

ance (McBain and others (35)) also involve a change in surface 

area as the surface tension changes. Thus, it is not possible 

to know the true zero time with any of these methods. Rate 

equations developed to fit data obtained by these methods would 
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reflect the rate at which the surface area increased as well 

as the rate of fall of surface tension. 

The measurement of surface tension of solutions by means 

of a vibrating Jet of liquid has been used by a few authors 

(Bond and Puis (13), Addison (3), Burcik (16-19) and Rldeal and 

Sutherland (42)). This method avoids the difficulties of the 

other methods but presents problems of its own. 

In 1879 Lord Rayleigh (40) reported a series of experi­

ments on Jets issuing from non-circular orifices of various 

shapes. As a stream of liquid issues from an orifice, it has 

the same cross section as the opening. However, the surface 

tension exerts a force to make the surface area a minimum, 

that is, to make the cross section become circular. Momentum 

causes the motion to continue beyond the circular shape. If 

the orifice is elliptical in shape, the cross section of the 

Jet varies in shape from an ellipse to a circle to an ellipse 

and so on, but the major axes of successive ellipses are ro­

tated 90°. Rayleigh developed an equation relating the sur­

face tension to the wavelength, the density of the liquid, the 

cross-section of the Jet, and the pressure under which the Jet 

flowed. 

Pederson (38) continued the study of vibrating Jets, giv­

ing consideration to the following suppositions on which 

Rayleigh1s theory is based: 
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1. Deviations from the circular-cylinder form are ex­

ceedingly small. It is difficult or impossible to fit 

this in practice, as it is Just the divergence from 

the circular form which makes it possible to determine 

the wave length. 

2. The vibrations are executed without loss of energy. 

However, all liquids have some viscosity and the waves 

damp out. 

3. The original velocity is the same over the whole 

cross-section of the Jet. Pederson claimed that for 

the Jets he used this was very nearly true. 

4. The surface tension is constant. The surface tension 

of pure liquids is constant or very nearly so but the 

surface tension of solutions may change with time. 

Jets from even the best orifices which Pederson used were 

not free from alien vibrations. To improve the situation he 

suggested that a tube, rather than a plate, having an orifice 

of the proper shape would produce more nearly single vibrations. 

However, when a tube is used, the surface velocity of the Jet 

is less than that at the axis, thus departing from one of the 

assumptions on which the theory is based. 

Closely following the work of Pederson, Bohr (12) pre­

sented a paper giving the results of his work with vibrating 

Jets. He emphasized the importance of producing a Jet which 

executes vibrations of a single type. Since it was difficult 
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to get pure vibrations near the orifice, Bohr's objective was 

to produce a Jet which would be stable even at great distances 

from the orifice. He used the consistency of the wave lengths 

along the Jet as proof of the exactness of his method and the 

purity of the vibrations. 

Pederson and Bohr added terms to Rayleigh's original 

equation to correct for the effect of viscosity of the liquid 

and the amplitude of vibration. 

Addison (3) studied the relation between rate of flow and 

wave length in the vibrating Jet. Theoretically these should 

be proportional to each other, but he found that wave length 

increased faster than flow rate. He says that Rayleigh and 

Bohr attributed this effect to (a) the damping effect caused 

by viscosity of the liquid, (b) the increasing wave amplitudes 

which come with increasing flow rate, and (c) the inertia of 

the surrounding medium. He also stated that when liquids of 

low viscosity are used, the velocity gradient set up at the 

orifice from the axis to the surface of the Jet would be main­

tained throughout the Jet. This would cause the restoring 

force of the surface tension to act at an angle slightly dif­

ferent from 90° to the surface. A3.though he showed mathe­

matically how this would affect the period of vibration, he 

stated that there was no practical method of making the 

necessary measurements to correct for this effect. 
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Instead of using the equation as Rayleigh, Pederson, and 

Bohr had developed it, Addison collected all the terms except 

the wave length and the relation between the rate of flow and 

the wave length into one term which he claimed was a constant 

for any one apparatus. The value of the constant was deter­

mined from the known surface tension of water and checked using 

three organic liquids. 

Rldeal and Sutherland (42) also used the vibrating Jet 

technique to study the surface tension of solutions. They 

concluded that the rate of decrease of surface tension as 

measured by the vibrating Jet was dependent on the orifice 

used, the smaller the orifice the more rapidly equilibrium was 

approached. They also showed that the results differed for 

the same orifice when the rate of flow was changed. 

Although the vibrating Jet method of measuring surface 

tensions of solutions has great potential, the method of 

calculation must be Improved to account for variation In 

velocity over the cross section of the Jet. If this could be 

done, accurate surface tensions could be obtained for any 

point along the Jet. If the vibrating Jet method is to be 

useful for the determination of the rate of surface tension 

depression, it is necessary to evaluate the surface tension 

accurately at a point on the Jet. It is equally necessary 

to evaluate the true age of the surface at that point, and for 

this it is necessary to know the surface velocity of the Jet, 
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as contrasted with the mean velocity. Rldeal and Sutherland 

(42) appear to be the first workers to recognize the existence 

of a problem in this respect, and their treatment of the prob­

lem was only approximate. 

Measurement of Rate of Wetting 

The methods commonly used to determine the wetting ability 

of solutions have been to measure the time required for a skein 

of yarn (23a) or a canvas disc (50) to sink in the solution. 

Obviously this is a measure of the rate rather than the degree 

of wetting. For the skein wetting test a specified amount of 

yarn is attached by a thread to a weight. The sinking time is 

measured from the time the skein enters the solution until it 

sinks to the point that the tension is taken off from the 

thread connecting the yarn to the weight. In the canvas disc 

test a circle of the fabric is held below the surface of the 

water and the time required for the disc to begin to sink 

because of its own weight is measured. 

Within the range of five seconds to three minutes fair 

reproducibility is obtained when skilled persons repeat their 

measurements (48). However, in order for workers to compare 

results all must use the same type of yarn or of woven fabric 

and all must use the same techniques. At best the test is 

empirical and gives no insight into the mechanism of wetting. 
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Several workers (4l, 51) have used a hydrometer to follow 

the extent of wetting of yarns or fabrics. As the cloth be­

comes more thoroughly wet, the buoyancy decreases. When high 

concentrations of wetting agents are used, the wetting may be 

rapid but not complete because of occluded air. This test has 

little advantage over sinking time tests and neither test is 

of any value in studying the mechanism of wetting. 
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MATERIALS, APPARATUS, AND METHOD OF PROCEDURE 

Materials 

Two anionic and one catIonic surface active agents were 

used in this study. Santomerse D, a sodium decylbenzenesul-

fonate manufactured by Monsanto Chemical Co., is typical of 

the alkyl aryl sodium sulfonates used in packaged detergents. 

Areskap 100, monobutylphenylphenol sodium sulfonate is another 

anionic product manufactured by Monsanto. The cationic agent 

used was trimethyldodecylammonium chloride obtained from 

Research Division, Armour and Co. 

Attempts to purify the anionic materials by recrystalliza-

tion were unsuccessful. On precipitation from solution they 

form a waxy mass. No literature reference could be found which 

reported purification of either Areskap or Santomerse D or 

related compounds. Several authors have reported studies 

involving these materials but they either used the compounds 

as received or they did not report whatever purification they 

carried out. These materials were therefore used without 

purification (except for drying). The Santomerse D used can 

be expected to be heterogeneous as to position of substitution 

(alkyl group ortho or para to sulfonate group) and as to nature 

of alkyl group (straight chain or branched) and to contain a 

small amount (not more than 0.$%) of sodium sulfate. The 
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Areskap 100 used can be expected to be heterogeneous ae to 

position of substitution, and it probably also contained a 

small amount of sodium sulfate. 

Purification of trlmethyldodeoylsunmonium chloride was ac­

complished by crystallization from ethanol. The crystals 

formed readily as the solution cooled. 

All the materials were dried to constant weight at room 

temperature over anhydrous magnesium perchlorate before use. 

The water used In the surface tension measurements or in 

making up solutions was distilled from alkaline permanganate 

solution. The acetone and butanol used were purified by dis­

tillation using a 30 plate Oldershaw column at 10:1 reflux 

ratio. The boiling point of the acetone used was 55.2°0. at 

739 mm. of pressure and of the butanol, 117°C. at 7̂ 0 mm. 

The solution with the highest concentration of each of 

the surface active agents was made up by weighing out the re­

quired amount of solid and diluting to volume. As these 

materials, especially the anionic ones, are quite hydroscopic, 

the weighing was done by difference and the weighing bottle 

opened for as short a time as possible. Other solutions were 

made up by dilution of more concentrated ones. 

Apparatus for Measuring Dynamic Surface Tensions 

The apparatus used In this study to measure dynamic 

surface tensions can be separated into the equipment used to 



www.manaraa.com

40 

produce the Jet and that used to determine the wave lengths 

and the Jet diameter. 

In order to produce vibrating Jets from which accurate 

surface tension data can be obtained, the apparatus must meet 

certain requirements. The orifice from which the Jet issues 

must have a section of the form r = a + b cos 20, the rate 

of flow must be maintained constant, vibrations from the 

apparatus must not be passed on to the Jet, and the apparatus 

must be easily cleaned. 

The apparatus used is shown in Figure 1. It consisted of 

a main reservoir A, a constant head reservoir B, the tube con­

taining the orifice C, and the connecting tubing. The main 

reservoir was a 5-liter, round bottom flask to which the female 

part of a ground glass Joint was attached. Flow of liquid 

from this reservoir was controlled by a ground glass male plug 

attached to the glass rod D by which it was manipulated. The 

tube E was constricted so that the rate of volume flow from 

the main reservoir to the constant head reservoir slightly 

exceeded that from the constant head reservoir through the 

orifice, the excess being discarded through an overflow. 

The constant head reservoir was made from a large test 

tube by attaching to it two side tubes on opposite sides and 

at different levels, the upper tube serving as an overflow. 

In order to prevent turbulence in the reservoir from affecting 

the stream, liquid was discharged into the reservoir near the 
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A MAIN RESERVOIR 
B CONSTANT HEAD RESERVOIR 
C ORIFICE TUBE 
D ROD TO MANIPULATE PLUG IN DISCHARGE TUBE 
E DISCHARGE TUBE 

Figure 1. Apparatus for producing the Jet 

(Scale: 1" = 5") 

» 
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bottom of the tube, an appreciable distance from the aide tube 

through which the liquid flowed to the orifice. The nickel 

orifice tube was attached to a short length of glass tubing 

which was connected to the discharge tube from the reservoir 

by means of a ball and socket Joint. Two reservoirs were used, 

each with a different length of discharge tube, to give dif­

ferent pressure heads. 

The entire apparatus with the exception of the orifice 

tube was made from glass and was cleaned with hot chromic acid 

cleaning solution before each test. The orifice tube was 

rinsed with acetone and double distilled water and dried before 

each use. 

Vibrations in the entire apparatus were reduced to a 

minimum by mounting the parts on a rigid frame. The framework, 

shown in Figure 2, was made from DexAngle, manufactured by 

Acme Steel Co. Sufficient cross-bracing was used to hold It 

rigid. For some teste the orifice tube was clamped firmly to 

the supports. In other cases the connection was less rigid. 

Apparently more vibrations were transferred to the orifice 

tube when the connection was rigid; in such cases, the stream 

was less steady and fewer waves could be measured. 

Rayleigh's equation from which surface tensions are calcu­

lated from vibrating Jet behavior results from a development 

In Fourier-Bessel series of the velocity potential perturbation 

by the non-circular Jet. Terms in this series are of the form 
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Figure 2. Arrangement of apparatus on DexAngle framework 
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coe nô Jn(lkz), where n le an Integer, z le the axial distance 

from the orifice, and Jn le Beeeel'e function of order n. 

Terms with high n are rapidly damped by viscous forces, but 

In order to make accurate surface tension determinations near 

the orifice it is highly desirable that the Fourier-Bessel 

series reduce to a single term. This can be accomplished by 

making the orifice section accurately of the form r = 

a + b cos m6. in which case all terms in the series except 

the m**1 have zero coefficients. If m = 2, the orifice section 

is nearly elliptical, the Jet form le relatively simple to ob­

serve, and fabrication of an orifice to this section Is 

reasonably practicable. 

There should be no movement of molecules perpendicular to 

the axis of the jet except the movement associated with the 

vibration of the Jet. This means that there can be no spread­

ing of the stream as it leaves the orifice and no turbulence 

in the stream. To prevent the stream from spreading the edges 

of the orifice must be sharp. Turbulence results in particular 

from a sudden change in the diameter of the tube or stream. 

A fairly small orifice is chosen so that the liquid being 

tested will be conserved, but a delivery tube with a larger 

diameter Is needed so that friction does not reduce the force 

with which the liquid flows from the orifice. If a plate 

orifice is used, turbulence must certainly be present and 

measurements made near the orifice would be of little value. 
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When a sudden change in diameter occurs, the effects of 

an unstable turbulence damp out as the stream travels. From 

his experience in hydrodynamics Professor Glenn Murphy, Head 

of the Department of Theoretical and Applied Mechanics, Iowa 

State College, advised that turbulence could be expected to 

disappear as the stream travelled a distance eight times the 

difference in the two diameters. However, for this work it 

was important that there be no turbulence in the stream even 

near the orifice. Professor Murphy further advised that turbu­

lence could be avoided if the change in diameter occurred 

gradually over that same distance within the tube. 

Besides having no sudden changes in diameter, it is im­

portant that the sides of the tube be absolutely smooth so that 

no eddies are created and disturb the flow. Unless a large 

amount of liquid is available for each experiment, it Is im­

portant that the orifice be reasonably small, of the order of 

one millimeter in diameter. 

In summary the requirements of the orifice are as follows : 

1. The cross-section must be of the form r = a + b cos 2$. 

2. The difference between the major and minor axes must 

be small. 

3. The edge of the orifice must be sharp. 

4. There can be no sudden changes in the diameter of the 

tube in the neighborhood of the orifice. 
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5. The interior of the delivery tube near the orifice 

muet be smooth. 

6. The orifice Itself should have an average diameter of 

the order of one millimeter. 

Several attempts were made to construct a tube and orifice 

from glass capillary tubing and from six to eight millimeter 

tubing. In all cases it was difficult to shape the orifice 

correctly. When capillary tubing was used, the glass was held 

in a vertical position and heated evenly on opposite sides and 

squeezed gently with vise-grips. The tube was later out or 

broken at the spot which had been heated. The amount of de­

formity from circularity depended on how hot the glass was and 

how much it was squeezed. Many orifices had to be constructed 

before one passed a visual inspection for elliptical shape. 

Attempts were made to soften larger tubing and let it shrink 

down onto a solid object which had the appropriate shape but 

to which the glass did not stick. No material was found which 

could be shaped accurately and to which glass did not adhere. 

The idea of making an orifice from glass was abandoned in 

favor of constructing one by electroforming a tube on an ac­

curately shaped mandrel. Drill rod, one-fourth inch in diam­

eter, was chosen for the mandrel. It was shaped in a lathe to 

taper evenly from the original diameter to approximately one 

millimeter over 5 centimeters of length. The small tip ex­

tended about two centimeters beyond the taper. It was then 
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polished by turning it at high speed in a lathe while car­

borundum backed by Apiezon was held against the metal. During 

this process special attention was given to the needle-like 

tip and to the Junction of the main taper and the tip. After 

the polishing was completed, the diameters of the tip were 

measured at 10° intervals to determine that the cross section 

of the mandrel had remained circular. 

The tip was then modified to elliptical cross section by 

stroking the tip lengthwise between the first finger and thumb, 

carborundum having been placed on the thumb and finger. In 

order to approximate symmetrical erosion as closely as pos­

sible, right and left hands were used on alternate strokes, 

pressure between the thumb and finger was maintained as con­

stant as possible, and the strokes were in the direction of 

the long axis of the mandrel. 

The relative number of strokes at each position required 

to change a circle into an ellipse was calculated. The strokes 

were counted and when the predetermined number for one position 

was completed, the mandrel was rotated 20° and the rubbing 

begun again. 

When the difference between minimum and maximum axes was 

great enough to be satisfactory, the "diameters" or axes dif­

fering in orientation by 10 to 20° were measured and plotted. 

A plot of d = 2a + 2bcos20 was drawn where d is the "diame­

ter", 2a the average diameter, and 2b is the difference between 
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maximum and minimum diameters. Comparison of the points 

plotted from the measurements with the theoretical plot showed 

where the tip required further rubbing to give it the desired 

shape. 

The mandrel which was actually used required 75»000 

strokes to convert it to its final shape. 

Electroformlng requires a deposit which will adhere to 

the base well enough to accurately take the shape of the base 

and yet will release the base when it is desired to strip off 

the plating. Nickel will not adhere strongly when plated over 

chromium which has been oxidized slightly to make it passive. 

For this reason nickel was chosen as the material for the tube 

and the mandrel was plated with chromium. Because chromium 

bonds well to copper and copper to steel, a thin layer of 

copper was deposited on the mandrel followed by a thin chromium 

layer. The passivation of the chromium was accomplished by 

allowing the mandrel to remain in the chromic acid plating bath 

for a short time after the plating current was stopped. 

Before the plating was begun, the mandrel was cleaned very 

thoroughly to remove all grease. It was washed in detergent 

solution, rinsed and air dried. Then it was dipped several 

times In trlchloroethylene and again air dried. Further 

cleaning was accomplished by making the mandrel the anode in 

an alkaline solution and allowing electrolysis to take place 

for several minutes. The alkali was neutralized by dipping 
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the mandrel in five percent hydrochloric acid. At that time 

the mandrel was ready for copper plating. 

The solutions, temperatures, current or current densities, 

and the length of time for plating are given in Table 1. These 

data are adopted from the work of Blum and Hogaboom (11). 

Because the area on which the nickel was deposited in­

creased as the plating progressed, the current had to be in­

creased to keep the current density constant. The nickel 

plating process was terminated when it was considered that the 

plating was thick enough to withstand the force required to 

strip it from the mandrel. Near the top of the plating, the 

large diameter of the mandrel, the plating was about 0.15 cm. 

thick. At the tip end it was much thicker, about 0.25 cm. 

Two additional steps were required before the plating was 

removed from the mandrel. The end of the mandrel and plating 

was ground off on an emergy wheel to expose a predetermined 

cross section of the tip, one which earlier measurements had 

shown to be the desired shape. The end of the plating and 

mandrel was then polished on a metal polishing wheel until no 

scratches were observable under a hand lens. Next a square 

shoulder against which force could be applied was turned in a 

lathe on the other end of the plating. While it is being re­

moved, the plating must not be allowed to turn on the mandrel. 

For verification of the shape of the orifice the axes of 

the orifice Itself were measured at various orientations. 
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Table 1. Solutions and conditions for electroplating 

Process Solution Temperature Current or Time 
current density 

Alkaline 
cleaning 

23 g. Na2C03 
23 g. Nâ PO/j. 
10 g. NaOH 
Make up to one liter 

75°C- 0.4 amps 5 minutes 

Copper 26 g. CuCN 
plating 35 g. NaCN 

30 g. Na2C03 
45 g. Rochelle salt 
(NaKC2H402e4 H20) 
Make up to one liter 

70° C. Cathode— 
7 amps/dm2 
Anode 
3 amps/dm2 

20 seconds 

Chromium 400 g. CrOo 45°C. 
plating Make up to one liter 

Cathode— 
3 amps/dm2 

10 minutes 

Nickel 240 g. NiS04e6 H20 
plating 45 g. N1C12*6 H20 

30 g. boric acid 
Make up to one liter 

43 P n  Cathode— 
0.1-0.3 , 
amps/dm' 

2&-3 days 
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These measurements were compared with a cosine curve having 

the same maximum and minimum. The agreement of the two curves 

for the orifice used was considered satisfactory. The 

theoretical curve and experimental points are shown in Figure 3. 

Apparatus for determining the wavelength and the .let diameter 

In the vibrating Jets used the maximum and minimum diame­

ters differed by no more than 0.009 cm. and the change from 

maximum to minimum occurred very gradually over several milli­

meters. Because of these facts it was impossible to determine 

the distance from one maximum to another on the stream itself. 

Several authors have reported ways to magnify this difference. 

The method used here is similar to that used by Rldeal and 

Sutherland (42). Each wavelet acts as a lens focusing the 

light passing through the stream. When a screen is placed 

behind the stream at a distance of one focal length, parallel 

lines of light appear which are perpendicular to the stream. 

The distances between the lines represent the wavelengths of 

the vibrations in the jet. Figure 4a Is a schematic presenta­

tion of the light being focused by the stream; Figure 4b is a 

typical photograph showing the focused lines of light. 

To avoid magnification caused by divergent light, it was 

desirable to illuminate the Jet with parallel light. This was 

obtained by reflecting light from a parabolic mirror. The 
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Figure 4. Focusing effect of the Jet 

a. Schematic diagram of Jet focusing light 

b. Photograph showing focused and unfocused lines 
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mirror had been purchased by Dr. Lawrence Barbell from the 

Mayfloor Products Corp., Katonah, N. Y., for use in a tele­

scope. Its diameter was approximately ten inches and its focal 

length, 76 inches. The light source was a 40-watt "Zirconarc" 

photomiorographic lamp from the Fish-Schurmann Corporation. It 

was made to approximate a point source by enclosing it and 

using only the light issuing through a hole three-eighths inch 

in diameter. The focal point of the mirror was located by 

moving the light source nearer to and farther from the mirror 

until the shadow of the markings on a transparent scale fell 

exactly on the markings of a duplicate scale which was placed 

at some distance farther from the mirror. 

Because it is both difficult and inconvenient to measure 

the wave lengths while the stream is flowing, photographs were 

made which could be examined at one's leisure. No camera as 

one usually thinks of it was needed as the wavelets in the 

stream serve to focus the light. Apparatus for taking photo­

graphs consisted of an arrangement for holding the photo­

graphic plate, shielding to prevent stray light from striking 

the plate, and some means of controlling the exposure time. 

The photographic plates used were 4" x 10 11 IV N Spectro­

grapĥ  plates from Eastman Kodak. They were held firmly in a 

rectangular plate holder during the exposure. The holder was 

clamped to a ringstand and its position could be varied by 
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moving it vertically on the rod or by shifting the position of 

the ringstand. 

DexAngle framework was extended horizontally from the sup­

ports on which the Jet apparatus was attached. The top and 

sides of this were covered with cardboard to form a housing 

which protected the plate from stray light. In the shielding 

between the mirror and the Jet a slit was cut so that light 

could strike the Jet. This opening was adjustable so that 

very little besides the Jet was illuminated. 

The exposure was made by admitting light through the slit 

for a predetermined time. Since the exposure times were rela­

tively long, from ten seconds to five minutes, the exposure 

could be controlled manually and the timing done with a stop­

watch. 

The focal length of the wavelets increased along the stream 

as the wave length increased. This Increase came because of 

increase in stream velocity due to gravity. When solutions of 

surface active agents were used, a further increase in wave 

length resulted from the decrease in surface tension. If the 

change in focal length along the stream was significant, not 

all the parallel lines formed by the light passing through the 

Jet could be brought into focus at any one distance from the 

Jet. For this reason a series of pictures was taken at dif­

ferent distances so that every line appeared in reasonably 

sharp focus on at least one plate. 
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In order to determine the velocity of the stream it was 

necessary to know its diameter. Measurement of the shadow of 

the Jet on the plates used for measuring wave length did not 

give a sufficiently accurate value for the diameter. Photo­

graphs were therefore made with a real camera which gave a 

magnification of about six. The picture included the tip of 

the orifice tube so that distances along the stream from the 

orifice could be determined. A glass rod whose diameter was 

accurately known was included in the photograph and used to 

determine the exact magnification. 

All measurements to determine wave length or Jet diameter 

were made by means of the Cambridge Universal Measuring Machine. 

This is essentially a travelling microscope and an accurate 

scale. With this machine It is possible to measure with a 

precision of 1 2 x 10"^ cm. 

Photographs 

Several of the pictures have been reproduced here. 

Figures 5a and b are pictures taken of a vertical Jet of water 

with a velocity of 233.0 cm./sec. The white vertical strip 

resulted from light which passed through the slit and exposed 

the plate. The shadow extending Into the slit at the top is 

part of the orifice tube. The shadow of the Jet itself shows 

faintly at the tip of the tube. The horizontal lines are 
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a. b. c. 

Figure 5. Water Jets showing variation in focusing ability 
and dependence of wavelength on velocity 

a. v ~ 233.O cm./sec., 12 inches between plate 
and Jet 

b. vQ = 233.0 cm./sec., 21 inches between plate 
and Jet 

c. v = 187.1 cm./sec., 6 inches between plate 
and Jet 
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formed ae the light striking the wavelets in the Jet is focused 

as is shown in Figure 4. As the Jet flowed, the velocity in­

creased because of gravity, and the increase in velocity along 

the Jet caused the waves to increase in length and the lines 

in the photograph to be farther apart. Further, the focal 

length of each wave acting as a lens increased as the wave 

length increased and as the waves damped out. The picture in 

Figure 5& was obtained with a photographic plate 12 inches from 

the Jet. In it the third, fourth and fifth lines are narrow 

and have sharp edges. In Figure 5b, taken with 21 inches be­

tween the Jet and the photographic plate, the ninth, tenth and 

eleventh lines are in best focus. The lines which focus in 

front of the plate are broad but fairly sharp while those which 

focus behind it are progressively more fuzzy and dim. 

Figure 5c shows the lines from a vertical Jet of water at 

a velocity of 187.1 cm./sec. Comparison of lines in Figures 

5a and 5c shows that at lower velocities the waves have greater 

focusing ability and the lines are finer than when the wave 

lengths are longer. Very accurate measurements of the wave 

length could be made easily on photographs similar to Figure 5. 

Figure 6a shows a picture of an acetone Jet having a mean 

velocity of 252.6 cm./sec. The wave lengths are longer than 

for water Jets at the higher velocity and the lines are 

broader. Even the sharpest lines in the pictures for acetone 

are not as fine as the focused lines for water. Because of 
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a. b. 

Figure 6. Acetone Jet 

a. 18 inches between plate and Jet 

b. 30 inches between plate and Jet, glass rod 
used to "collect" light 
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the lower viscosity of acetone the change in wave amplitude 

along the stream is smaller for acetone than for water. 

The right hand part of Figure 6b shows the results of an 

attempt to concentrate the light In the lines. A three-fourths 

inch glass rod was placed between the Jet and the photographic 

plate in such a way that the light passing through the rod was 

focused on the plate. Although the rod collected the light as 

predicted, the spots on the plate were not sharply enough de­

fined to permit accurate measurements. A similar arrangement 

using a better lens should give improved results and allow 

pictures to be made with shorter exposure times. 

Pictures of butanol Jets are shown in Figure ?• The well-

focused lines in Figures 7a and 7b are very fine compared to 

similar lines for either water or acetone. Only one line is 

in good focus in each of the pictures, indicating that the 

focal length of the wavelets changed rapidly along the stream. 

The relatively high viscosity of butanol causes the waves to 

damp out quickly. Even at a distance of 64 inches between the 

stream and the photographic plate, Figure 7c, it is only the 

fifth line which is in best focus. The fifth wave in the ace­

tone stream shown in Figure 6b had a focal length in the neigh­

borhood of 3° inches. The focal length of the corresponding 

wave for water in Figure 5& was slightly more than 12 inches. 

Figure 8 shows pictures of Jets of Santomerse D solu­

tion. They are typical of the pictures obtained from Jets 
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At b» C• 

Figure 7. Butanol jets 

a. 15 Inches between plate and Jet 

b. 24 Inches between plate and Jet 

c. 64 Inches between plate and Jet 
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b. o. 

Figure 8. Santornerse D solution jets 

a. 12 inches between plate and jet 

b. 33 inches between plate and Jet 

c. 45 inches between plate and Jet 
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of solutions of surface active agents. 

With the long exposure needed when the distance from the 

plate to the Jet was large, the image of the slit was so much 

over-exposed that the position of the end of the orifice tube 

could not be determined exactly. This is apparent in Figure 6 

and others. In Figure 8a light striking part of the picture 

was blocked out after a few seconds of exposure. As a result 

the end of the orifice tube Is easily located and the shadow 

of the jet is clearly seen. 

Procedure for Collecting Data 

Dynamic surface tension measurements 

Before each test, all the glass parts used in producing 

the Jet were cleaned with hot chromic acid cleaning solution 

and rinsed with double distilled water. The orifice tube was 

rinsed with acetone and double distilled water. The constant 

head reservoir and the orifice tube were dried before each use. 

Because of the size of the main reservoir, it was not oven-

dried but it was rinsed with the liquid to be tested before 

it was filled. 

At the beginning of the test all the parts were assembled 

and the reservoir filled with liquid. The Jet was allowed to 

flow long enough so that the stream could be adjusted to flow 



www.manaraa.com

64 

vertically. This was done by lining the stream up with a plumb 

line. Before any photographs were made, the parallel lines of 

light were focused on a screen in the plate holder and the 

plate holder moved to various distances from the Jet to deter­

mine in what positions photographs should be made. 

The room was darkened and the light from the Zircon lamp 

covered while the screen used for focusing was replaced by a 

photographic plate. The cover was taken from the light and 

the plate exposed. For pictures made with the plate near the 

stream as little as ten seconds was a sufficient exposure, but 

because of the spreading of the light, the pictures taken at 

the greatest distance from the Jet required up to five minutes 

exposure. The exposure was stopped by covering the light 

source again. 

The plates were developed five minutes in Eastman Kodak 

D-19 developer, rinsed under running water and placed in East­

man Kodak F5A fixer for 10 minutes. After that they were 

washed in running water for 10 to 30 minutes and dried. 

The relative positions of the lines and the orifice were 

obtained by means of the measuring machine. Triplicate measure­

ments were made on each line and the three values averaged. 

For the sharpest, bright lines the agreement between two 

measurements was ± 0.0005 cm. However, measurement of the 

more diffuse, dim lines was not nearly so accurate. Reproduci­

bility In measuring the least sharp lines was * 0.005 cm. The 
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position of the orifice was even more difficult to locate 

accurately. Its shadow appeared on the plate but overexposure 

of the surrounding area caused the shadow to have extremely 

fuzzy edges. The position of the orifice was known with an 

accuracy of no more than ± 0.05 cm. 

Table 2 is typical of the raw data for a test. 

The volume rate of flow was determined by measuring the 

length of time required to fill a volumetric flask. Agreement 

between measurements was + 0,005 cm,̂  per second. 

The temperature of the liquid in the main reservoir was 

25° t l°C. for the tests. Whenever the room temperature was 

such that the temperature of the liquid was outside this range, 

the main reservoir was warmed or cooled to bring the tempera­

ture of the liquid within this range. 

Equilibrium surface tension measurements 

All equilibrium surface tension measurements were made by 

means of a DuNouy tensiometer. For the more concentrated solu­

tions equilibrium values were reached practically immediately 

after the surface was formed. However, for the more dilute 

solutions readings were taken over a period of time until con­

stant values were obtained. Each time that measurements were 

made, several readings were taken and the results averaged. 



www.manaraa.com

66 

Table 2. Typical raw data for dynamic surface tension 
measurements 

(Santomerse D; Cone. 9*3529 g./l.; vQ = 233.0 cm./ 
sec.; 25-26°C.; Picture series 163) (Data in cm.) 

Plate Line no. Scale reading on Av. scale Wave 
no. measuring machine reading length 

163a Orifice 

1 

163b 

28.9602 
28.9182 

27 . 89 23 
27.8900 
27.8918 

26.8114 
26.8110 
26.8112 

25-6900 
25.6895 
25.6898 

24.5430 
24.5424 
24.5425 

23.3725 
23.3732 
23.3760 

26.004 2 
26.0030 
26.0025 

24.8569 
24.8554 
24.8562 

23.6888 
23.6880 
23.6878 

22.5064 
22.5045 
22.5036 

28.9392 

27.8914 

26.8112 

25.6898 

24.5426 

23.3739 

26.0032 

24.8562 

23.6882 

22.5048 

1.0478 

1.0802 

1.1214 

1.1472 

1.1687 

1.1470 

1.1680 

1.1834 

1.1959 
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Table 2. (Continued) 

Plate Line no. Scale reading on Av. scale Wave 
no. measuring machine reading length 

7 21.3085 
21.3073 21.3089 
21.3110 

8 20.1037 1.2054 
20.1028 20.1035 
20.1040 

163c 6 23.1557 
23.1552 23.1551 
23.1545 

7 21.9642 1.1912 
21.9640 21.9639 
21.9635 

1.2050 
8 20.7601 

20 . 75 5 2 20.7 589 
20.7615 

9 19.5419 
19.5411 19.5417 
19.5421 

10 18.3216 1.2202 
18.3220 18.3215 
18.3208 

163d 8 20.1467 
20.1542 20.1489 
20.1458 

9 18.9273 
18.9319 18.9303 
18.9316 

10 17.7131 
17.7134 17.7113 
17.7074 

11 too dim to read 

1.2172 

1.2186 

1.2190 
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The variation in readings for a single measurement was 

approximately £ 0.2 dyne per centimeter. 

The tensiometer was calibrated by means of known weights 

over the range used in this study. The Harkins correction fac­

tors (31) for volume of liquid lifted by the ring were applied. 

Before each measurement the ring was cleaned by dipping it in 

hot chromic acid cleaning solution, rinsed with double distilled 

water and dried on clean filter paper. 

Evaporation of water from the solutions between readings 

was a problem. It was reduced to a minimum by storing each 

solution in a closed space along with a container of water whose 

surface area was equal to or larger than the surface of the 

solution. Only a small amount of water was needed to saturate 

the air in the enclosed storage space and a large portion of it 

could come from the container of water rather than from the 

solution. 

All measurements were made at 25 1 2°C. Whenever the room 

temperature was outside this range, the solution was brought 

within this range immediately before the measurement by placing 

the watch glass containing the solution in contact with a 

beaker of water of the appropriate temperature. 

Sinking time tests 

The wetting ability of the solutions was measured by the 

canvas disc wetting test. The fabric used was Mount Vernon 
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Duck, #6, from Harrington, King and Co., Boston, Mass. Circles, 

one inch in diameter, were cut from the material with sharp 

shears so that the edges were not fuzzy. 

Approximately 300 ml. of solution were used in a 400 ml. 

beaker. A 50-ml. beaker with several holes in the bottom was 

used to hold the fabric below the surface of the solution. Be­

fore the test the small beaker was brought to temperature in 

the solution. At the time of the test it was removed from the 

solution, the circle of fabric positioned in the bottom of the 

beaker and the beaker returned to the solution in an inverted 

position. A stop watch was started as the fabric entered the 

solution and stopped at the time the disc began to sink in the 

solution. The reading of the watch was recorded as the sinking 

time. The test was repeated using the same solution but a 

fresh disc each time until eight sinking times were obtained. 

Measurements showed considerable variation from the average. 

All the sinking time tests were conducted at 25 Î 2°C. 

When the room temperature was such that the solution in air was 

outside this range, the beaker containing the test solution was 

placed in a larger container of water whose temperature was 

controlled. 
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ADAPTATION OF THE VIBRATING JET METHOD TO THE DETERMINATION 

OF THE DEPENDENCE OF SURFACE TENSION ON TIME 

Theoretical 

Bohr (12) has shown that, for a Jet issuing from an orifice 

of section r = a + b cos 2© with uniform velocity profile and 

constant surface tension, 

f z  
iP + f0 m>vn2too2j2<itoo) 

3+ k2r02iJ2'(lkr0) 

/ 2> \3/2 ( 
1+2(fvAr 2J +3(" 

2 M  

P*02̂ o2 
y 

i + 22JS1 
2k&2 (1) 

The meanings of the symbols in this equation and throughout the 

calculations are as follows : 

Y - surface tension 

P = density of the liquid 

Pm = density of the surrounding medium 

rQ = radius of the orifice 

v0 = average velocity of the stream 

k = 
A  

J0 = Bessel function of the second order 
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wave length of wave at whose midpoint the surface 

tension is calculated 

number of axes of symmetry 

viscosity 

rmax ~ i"mln 
rmax + rmln 

radius of the stream 

volume rate of flow or discharge 

ratio of surface to bulk velocity 

distance along Jet measured from orifice 

The assumption of constant velocity profile restricts the 

use of this equation to large distances from the orifice, but 

with this restriction the equation permits calculation of sur­

face tension from observed wave length, mean velocity, and mean 

stream radius. Corrections for viscous damping and finite 

amplitude of the waves are included. 

It is assumed that the flow of liquid through the orifice 

is lamellar, at least at the wall of the orifice. Hence, the 

axial velocity at the wall must be zero within the orifice, and 

the surface of the liquid immediately after issue from the ori­

fice is therefore assumed to be new surface. If the velocity 

profile of the Jet were constant, the mean velocity would also 

be the surface velocity and the surface age could be readily 

-

n = 

1 = 

h = 

b 
a 

a = 

0, — 

v 
V0 

z -
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evaluated from the measured mean velocity v0 and axial distance 

from the orifice z; thus 

However, the surface velocity differs from the mean velocity; 

it is zero at the orifice and approaches v0 only at large z. 

Surface ages evaluated by use of equation (2) are therefore un­

reliable in principle and are certain to be greatly in error 

for small ages (portions of the Jet near the orifice) which are 

of particular interest. If the surface velocity were known as 

a function of time, then the axial distance from the orifice 

travelled by a surface element in time t could be obtained by 

integration, 

This relation could be used to evaluate an accurate surface age 

from an observed axial distance. 

Basically, therefore, adaptation of the vibrating jet 

method to the determination of the dependence of surface ten­

sion on time involved three fundamental problems at the time 

this work was initiated, namely : 

1. The basic equation, equation (1), for the calculation 

t - z/v0 ( 2 )  

z t 
z(t) = JQ v(t)dt (3) 

of surface tension from jet parameters was derived only 

for the case of constant surface tension; whether or 
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not important modification in ite form resulted from 

a time dependent surface tension was unknown. 

2. The dependence of surface velocity on axial distance 

was unknown, and, as a consequence, no sound method 

existed for the calculation of surface ages from axial 

distances from the orifice. It was presumed, both 

intuitively and from the work of Rideal and Sutherland 

(42), that the dependence of surface velocity on axial 

distance from the orifice would be influenced by 

orifice design. 

3. The basic equation, equation (l), for the calculation 

of surface tension from Jet parameters was derived for 

the case of uniform velocity profile and the effect 

on its form of the non-uniform velocity profile in the 

Jet region of particular Interest (near the orifice) 

was unknown. 

The first of these problems was investigated by Hansen (28) 

for the uniform velocity profile case. He assumed that the sur­

face tension varied linearly with time over one wave length, 

treated the variation as a perturbation, and solved the result­

ing problem by successive approximations. He was able to show 

that, to good approximation, equation (l) gave the mean surface 

tension over the measured wave length. A small correction due 

to variation in Jet radius could be omitted if actual Jet radius 
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at the point of measurement, rather than the orifice radius, 

was used in the calculation. 

The second of these problems was solved by Hansen and 

Wallace (30). Bohr (12) had given a general form for the 

velocity profile in the Jet In terms of a Fourier-Bessel series 

in r, the radial distance, and t, the time after leaving the 

orifice. Schiller (47) had studied the flow of liquids in 

pipes and, using Prandtl boundary layer approximation, derived 

an approximate velocity profile within the pipe in terms of 

distance from the entrance, tube radius, and Reynold's number. 

Schiller was able to prove experimentally that the velocity 

profile thus derived accounted for observed liquid flow prop­

erties through the pipe with great precision. Hansen and Wal­

lace therefore used Schiller's velocity profile (established 

in terms of orifice length), the radius, and the Reynold's num­

ber of liquid flowing through the orifice to furnish an initial 

boundary condition on Bohr's Fourier-Bessel series and thereby 

were able to determine the coefficients in the series. They 

then evaluated the series for r = rQ, the Jet radius, repeating 

the evaluation for a sufficient number of orifice flow conditions 

to permit interpolation. The surface velocity having thus been 

established as a function of time, the axial distance travelled 

by a surface element in time t was obtained by integration. 

The determination of surface age was thus permitted from mea­

sured axial distance. They then used the relation between 
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surface age and axial distance to establish the dependence of 

surface velocity on axial distance. 

The dependence of surface velocity on axial distance ac­

cording to these calculation is shown in Figure 9. Ordinate 

and abscissa are dimensionless groups proportional to surface 

velocity and axial distance; the parameter r'/r̂  is the ratio 

of the radius of the flat portion of the velocity profile to 

the tube radius. The dependence of this ratio, as given by 

Schiller, on orifice length, radius, and Reynold's number is 

given in Figure 10. The dependence of surface age on axial 

distance for the Jet used in the present work will be presented 

later. 

The third problem, the effect of the non-uniform velocity 

profile on the form of equation (l) presents a problem in hydro­

dynamics which does not appear solvable mathematically by pres­

ent techniques of mathematical hydrodynamics. Since the velocity 

profile was known and the wave lengths could be measured, it 

was therefore decided to attempt an experimental solution of 

this problem using liquids of constant, known surface tensions 

and relying on the principle of similitude. 

In a Jet with mean velocity v@ issuing from an orifice whose 

section is r = a t b cos 26 waves are observed in the Jet of 

wave number k. The wave number may be expected to depend on the 

surface tension of the liquid ( Y ), its density ( (° ) and vis­

cosity (/1 ), on its mean velocity (vQ), on the parameters of 
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the Jet orifice (a and b), and on the velocity profile. The 

velocity profile may be tentatively characterized by the ratio 

of surface to mean velocity, that le, by v/v0, with the reser­

vation that this single ratio may be inadequate for the charac­

terization. Then the statement of the variables on which the 

wave number depends implies the functional relationship 

F (k, / , f , /< , vQ, a, b, v/vQ) = 0. (4) 

There are three independent dimensions Involved in the eight 

functionally related variables; the principle of similitude 

(36b) requires that the functional dependence among the eight 

variables be reducible to a functional relationship among five 

dimensionless groups, choice of which is Immaterial so long as 

they are independent. With the choice of dimensionless groups 

suggested by the form of equation (1), equation (4) must 

therefore reduce to 

o( , T i . ka, , 2̂ * b/a, v/v0 ) - 0 (5) 
v f Tg'a / v02k a 

Furthermore, equation (5) must reduce to equation (l) when 

v/vc = 1. 
y 

Equation (5) permits one variable, say p v0̂ a * t0 ex~ 

pressed as a function of the remaining four and in principle 
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this function can be determined experimentally and tabulated. 

The work required would, of course, be formidable, although 

much less than would be required for seven independent vari­

ables, as suggested by equation (4). 

It was therefore decided to test equation (5) for separa­

bility of the functional dependence on v/v̂ . Equation (1) is 

of the form 

y 2 M  b 
TÏ& = f (to. T̂o2ka2 -a> (6) 

and is valid If v/vQ = 1. The assumption of separability 

implies that 

772I = ? <ka- f> ̂ %aZ ' a> S <T/T0> (7) 

when v/v0 X 1 and where f is the same function in equations 

(6) and (7) and is in fact completely Implied by equation (l). 

Furthermore, the form of g (v/v0) is limited by the requirement 

that g (l) = 1. A trial function of the form g (v/vQ) = (v/v0)m 

was selected as one of many possessing this property. Equation 

(7) can then be rearranged to 

 ̂= âpp (v/v0)° (8) 

in which y*pp is the apparent surface tension calculated from 
m 

equation ( l )  and the quantity (v/vq) serves as a correction 
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factor. The validity or lack of validity of equation (8) can 

be demonstrated experimentally by measuring properties of Jets 

formed by liquids with different velocities, velocity profiles, 

densities, surface tensions and viscosities issuing from vari­

ous orifices, and alternate assumptions can be made If neces­

sary. 

A somewhat modified form of equation (l) was used in 

actual calculations. This was obtained by neglecting /*m 
ft 

(density of air), substituting Q/tTa for vQ in the leading 

term, setting n = 2, setting k = 21T/̂  , and expanding the 

ratio of Bessel functions 

In power series in ka to the three leading terms. There 

results 

lka J2'(ika) 
J2( ika) 

7 app 

3/2 
/ 

(9) 

The force of gravity serves to Impart a downward accelera­

tion to each element In the Jet stream. A Jet issuing hori­

zontally therefore curves downward and the curvature interferes 
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with the focusing of light by the Jet and makes interpretation 

of spacing of lines focused on a photographic plate in terms 

of Jet wave length difficult. Therefore, a vertical Jet was 

used in the present work; that is, the Jet issued downward from 

the orifice. The linear velocity therefore increased (due to 

gravity) with axial distance from the orifice, and since the 

volume flow rate Q must be independent of axial distance, the 

stream radius decreased with axial distance. If z is the axial 

distance from the orifice, vz is the velocity at z and ve the 

velocity at efflux, then 

T * z  M 1  * •  u o )  

2 Since ft = 7Ta v ia, constant, if az is the stream radius at z 

and aQ the stream radius at efflux, then 

= a„ (1 +• 1 (11) 

This amounted to a small but not negligible correction to the 

leading term in equation (9); the effect of this variation on 

higher order terms was negligible and was ignored. 

When a Jet issues from an orifice there is a contraction 

of the radius, the magnitude of which depends on the orifice de­

sign. A minimum radius is reached at a distance of the order 
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of a few diameters from the orifice and this is known as the 

vena contracta. Because of this, aQ was calculated from meas­

urements on the Jet below the vena contracta and was not s imply 

taken from the orifice. In Jets observed a@ was from two to 

four percent less than the orifice radius. 

Experimental 

Equation (9) was tested experimentally by studying the 

variation in wave length with distance for Jets of water, ace­

tone, and butyl alcohol, using two Jet velocities in each case. 

These liquids cover a range of surface tensions from 23.3 to 

72 dynes/cm. and of viscosities from 3*15 x 10" ̂ to 2.52 x 10~2 

poises. 

Jet wave lengths were determined as the differences between 

the average positions of the lines on the photographic plates. 

These differences were plotted and a smooth curve drawn through 

the points. Figure 11 is an example of such a plot. Wave 

lengths as determined from the graph were used in the calcula­

tion of surface tension. Because of the uncertainty of the 

position of the orifice and because the distance from the ori­

fice to the first line was not always a full wave, the first 

wave length was not used in calculating surface tension but it 

was used in determining the distance of the midpoint of each 
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wave from the orifice. The uncertainty or error in position 

of the orifice was unimportant for this use. 

The velocity of the stream was obtained from the relation­

ship between linear velocity, diameter, and volume rate of flow 

or discharge. 

T = = nS (12) 

The diameter of the stream was obtained from measurements on 

the picture of the stream photographed with the real camera. 

The exact magnification in the picture was obtained by compari­

son of the diameter of a glass rod in the picture with the 

actual measurements of the rod. The diameters of the stream 

in the neighborhood of the maximum and minimum were measured 

and the values divided by the magnification factor to obtain 

the diameters of the stream itself. An equal number of values 

at the maximum and minimum were averaged and this figure was 

considered to be the diameter at a point half way between the 

maximum and minimum. 

Stream radius at the midpoint of each wave was corrected 

for the acceleration of gravity as previously explained (equa­

tions 10 and 11). Viscosities and densities were taken from 

Lange 1s Handbook of Chemistry. These data complete the require­

ments for calculation of T'app from equation (9). 
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True surface tensions of water, acetone and butanol were 

taken from the International Critical Tables as 72.0, 23.3» and 

24.1 dynes/cm., respectively, at the temperature used In the 

test. Hence, In order to test equation (8) the only remaining 

undetermined physical quantity Is the ratio of the surface to 

mean velocity, v/vQ. The results of Hansen and Wallace (30) 

permit this ratio to be evaluated from orifice length, diameter, 

and flow Reynold's number. Since the orifice used had a tapered 

entrance, there was some uncertainty as to Its effective length. 

The actual straight section of the orifice was approximately 

0.2 cm., but this section was preceded by a five-centimeter 

section tapering from 0,6 to 0.1 cm. In diameter. Initially, 

calculations were made on the assumption that the orifice was 

equivalent to a one-centimeter straight section connected to 

an infinite reservoir. Results were sufficiently encouraging 

that work was initiated by Hansen and Wallace on straight ori­

fices of measured lengths ; their results indicated that the 

orifice used in the present work was equivalent to a 0,5 cm. 

straight section connected to an infinite reservoir. Results 

were recalculated on this basis. 

The value of v/v0 corresponding to a given axial distance 

was calculated in the following manner: the value of x, equiva­

lent straight section of the orifice, was taken as 0.5 cm. as 

previously explained; the orifice radius a was 0.0532 cm.; the 

Reynold's number, R = f voa/̂  , was calculated from measured 
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2 
mean velocity in the orifice, v0 = 0,/f a . Hence, the quantity 

x/aR was obtained and the ratio of radius of flat section of 

velocity profile at efflux to orifice radius, r1/r0, was ob­

tained from Schiller's graph, Figure 10. Dependence of v/v0 

on axial distance for various values of r'/r0 was available 

from the work of Hansen and Wallace as shown in Figure 9 ; 

hence, this ratio could be obtained for measured axial dis­

tance for the known value of r'/r0 by interpolation between 

curves for values of this parameter used in their calculation. 

Plots of log (Y/ fapp) against log (v/v0) should be 

linear according to equation (8). Linear plots were, in fact, 

obtained. A composite value of the slope obtained from the 

present work and the work of Wallace was 0.62. These results, 

therefore, support equation (8) in the form 

V = y
app(v/v0)0-62 (12) 

The difference between Y  and /app is about 2 0 %  for the 

initial waves for water and aqueous solutions. 

The following example illustrates the steps involved in 

calculating surface tensions. Data for water are used in this 

case. 

P =0.997 g/cm.3 

M = 0.0089̂  poises 

= 0.05218 cm. 
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r = 0.0532 cm. 

Q = 1.993 cm.3/860. 

T° " = M.°59218)2 = 233'° om-/aee-

R = = 0.997 (233.0) (0.0532) . 
>w 0.00894 JOJ 

x = 0.5 cm. 

ir = 1330 Ŵ 0532) = 7.07 x 10 3 

The value of x/Rr was used with Schiller's graph, Figure 10, 

to obtain r'/r = 0.65. 

z = the distance from the orifice to the midpoint of 

the specified wave 

z = v®? " x 10-3z 

Values of v/vQ were obtained from the graph by Hansen and 

Wallace, Figure 9. Values of a were read from a graph of a 

vs. z for the given velocity. Points on this graph were 

located by means of equation (10) and (11). 

°1 = 1 - f °.̂ r 

«a = I'S 

The ratio b/a decreases as the waves damp out. This effect 

was calculated from the equation given by Bohr (12, p. 298). 
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b/a = (b/a)0 e" * z 

"here ( = 7"̂ z • 

03 " 1 + 2fi7̂ ]3/2 * 3f / 

Typical data used In calculating surface tensions are pre­

sented in Table 3» data for water are used in this case. 

Values of surface tensions of water, acetone, and butanol 

calculated by means of equation (12) for various flow rates 

and axial distances are presented in Table 4. Except for the 

surface tension from the first wave all the values obtained 

for the surface tension of water at a velocity of 233-0 cm./ 

sec. are within 0.5 dyne/cm. of the accepted value, 72.0 

dynes/cm. at 25°C. Although the values are slightly less 

constant for the surface tension of water at the lower velocity, 

there is no steady trend to higher or lower values. Further­

more, only three of the values are more than one dyne/cm. 

different from the accepted value. 

At a velocity of 252.6 cm./sec. the values obtained for 

the surface tension of acetone are slightly lower than the 

accepted value, 23.3 dynes/cm. at 22-23°C. However, except 

for the first two waves the values are constant and very close 

to the accepted value. The data for butanol also show the 

constancy of the surface tension along the Jet and the 
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Table 3* Typical data used in calculating surface tensions 

(Water, 25°C, Q= 1.993 cm.̂ /sec. ) 

/ave 
No. 

A 
cm. 

z 
cm. 

Z = 
14.1 z 

a9 x 102 
cm. i*r 

°1 c2 °3 r 
dynes 
cm. 

1 0.731 0.366 

2 0.755 1.109 15.64 5.170 0.851 0.930 1 .0009 1 

-
*
 O
 
O
 
O
 71.16 

3 0.7# 1.873 26.41 5.137 0.888 0.933 1 .0009 1 

O
 
O
 
O
 71.59 

4 0.788 2.654 37-42 5.100 0.918 0.935 1 .0008 1 

-
*
 O
 
O
 
O
 71.84 

5 0.800 3.448 48.62 5.068 0.936 0.937 1 .0007 1 

O
 
O
 
O
 71-65 

6 0.808 4.252 59.95 5.038 0.948 0.940 1 .0007 1 

O
 
O
 
O
 71.90 

7 0.815 5.064 71.40 5.903 0.957 0.941 1 .0006 1 

4* O
 
O
 
O
 71.76 

8 0.821 5.881 82.92 4.973 0.965 0.943 1 .0006 1 O
 
O
 
O
 

-Fr
 

71.88 

9 0.827 6.706 94.55 4.943 0.971 0.944 1 

V\ 0
 
0
 
0
 1 

-3" O
 
O
 
O
 72.03 

10 0.832 7.535 106.24 4.913 0.976 0.945 1 

tTt 0
 
0
 
0
 1 O

 
O
 
O
 

71.91 

11 0.837 8.369 118.00 4.885 0.980 0.946 1 

-d-0
 
0
 
0
 1 O

 
O
 %
 

71.90 

12 0.840 9.208 129.83 4.855 0.983 0.947 1 0
 
0
 

1 .0004 71.92 
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Table 4. Surface tension of pure liquids 

(Data In dynes/cm.) 

Wave Vel. (cm./sec.) 
No* Water Acetone Butanol 

233.O 187.1 252.6 218.6 204.9 170.5 170.5 

2 71.2 

3 71.6 

4 71.8 

5 71.6 

6 71.9 

7 71.8 

8 71.9 

9 72.0 

10 71.9 

11 71.9 

12 71.9 

13 72.5 

14 72.5 

15 72.5 

73-3 21.5 

73.1 22.3 

72.7 22.8 

72.1 22.9 

71.7 22.8 

71.8 22.7 

71.7 

71.5 

70.9 

71.4 

71.5 

23.7 23.6 

23.5 24.6 

24.1 24.7 

23.7 24.5 

23.4 24.5 

23.4 24.3 

23.4 24. 8 

24.4 25. 0 

24.6 24. 9 

24.4 24. 7 

24.3 24. 6 

24.1 24. 6 

23.9 
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values obtained are all close to the accepted value of 24.1 

dynes/cm. at 25°C. 

Determination of Surface Age 

The dependence of surface age on axial distance for vari­

ous values of the parameter r Vr0 had been established by 

Hansen and Wallace in terms of % - Z and Z, where T = 

and Z = • % . Since the same orifice and essentially 
f %o vofro 
the same discharge rate were used in all experiments with 

detergent solutions, the value of rl/r0 was the same for all 

experiments. 

Table 5 gives the values of "T - Z and Z as obtained by 

interpolation from the data of Hansen and Wallace. In the 

same table the corresponding values of z, axial distance, 

and t, the surface age, are given. Figure 12 is based on the 

t vs. z data from Table 5* 

Since each surface element travels an additional distance 

£gt2 in time t due to the acceleration of gravity, a correc­

tion for this acceleration was made. The corrected curve is 

also shown in Figure 12. 
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Table 5» Data for obtaining age of surface from distance 
along stream 

«. z 102 E - °-6 £ • °-7 

Xb - Z *£ t sec. X - Z f t sec. 

1. 0 1.412 0.0108 0 0
 

1
 

0. 00757 0 .0092 0 .0233 0 .00708 

2. 0 2.824 0.0151 0 .0433 0. 01316 0 .0122 0 .0404 0 .01228 

3. 0 4.236 0.0176 0 .0600 0. 01824 0 .0142 0 .0566 0 .01721 

4. 0 5.648 0.0194 0 .0759 0. 02307 0 .0156 0 .0721 0 .02192 

5. 0 7.060 0.0208 0 .0914 0. 02778 0 .0168 0 .0874 0 .02657 

6. 0 8.472 0.0218 0 .1065 0. 03238 0 .0176 0 .1023 0 .03110 

7. 0 9.884 0.0226 0 .1214 0. 03691 0 .0182 0 .1170 0 .03557 

8. 0 11.296 0.0232 0 .1362 0. 04l4l 0 .0186 0 .1316 0 .04001 

9. 0 12.708 0.0237 0 .1508 0. 

-3-00 vn -d-0
 0 .0190 0 .1461 0 

I 0 

10. 0 14.120 0.0240 0 .1652 0. 05022 0 .0194 0 .1606 0 .04882 

Z = z 

VoV 

f = _ y*i t 
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RESULTS 

Dynamic Surface Tensions 

The dependence of surface tension on time vas measured 

for five solutions of Areskap 100, the concentration of the 

solutions covering the range from 0.325 to 5*197 grams/liter. 

The results are presented in Table 6 and Figure 13. 

The dynamic surface tensions of six solutions of Santo-

merse D are presented in Table 7 and Figure 14. The concentra­

tion range was from 0.292 to 9-353 grams/liter. 

The relationships between surface tension and time for 

trlmethyldode cylammonlum chloride solutions are given in Table 

8 and Figure 15. The four solutions studied ranged in con­

centration from 1.066 to 4.320 grams/liter. 

Equilibrium Surface Tensions 

Dependence of equilibrium surface tension on concentration 

in aqueous solutions of Areskap, Santomerse D and trlmethyl-

dodecylammonlum chloride is presented in Table 9 for concentra­

tion ranges of Interest for the dynamic surface tension studies. 
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Table 6. Dynamic surface tensions : Areskap 100 

(vQ = 233.0 cm./sec.) 

Wave 
no. 

Concentration 

0.3248 g./l. 
A "1 txlO2 
cm. dynes sec. 

cm. 

0.6496 g./l. 

A 
cm. 

V txlO2 
dynes sec. 
cm. 

1.2992 g./l. 

A txlO2 
cm. dynes eec. 

cm. 

0 (.70) — — — (.63) — — — — — — ( .65) — — — — — — 

1 .751 71.4 .75 .758 69.8 .70 .780 66.3 .72 

2 .769 72.4 1.13 .780 69.2 1.10 .824 62.9 1.13 

3 .783 72.6 1.52 .800 69.6 1.50 .864 60.2 1.55 

4 .796 72.2 1.87 .817 68.8 1.85 .896 58.0 1.95 

5 .806 72.1 2.24 .833 68.2 2.25 .922 56.4 2.35 

6 .813 72.1 2.57 .846 66.9 2.60 .945 55.1 2.74 

7 .820 72.0 2.92 .858 66.1 2.93 .962 53.7 3.13 

8 .826 71.9 3.24 .868 65.5 3.28 .978 52.7 3.52 

9 .832 71.8 3.55 .878 64.9 3.62 .994 51.8 3-87 

10 .836 72.0 3.87 .888 64.2 3.94 1.100 50.7 4.25 

11 .840 71.9 4.18 

12 .845 71.8 4.50 

13 .849 71.7 4.82 
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Table 6. (Continued) 

Wave Concentration 
no. 

2.5985 g./l. 5.1970 g./l. 

A V txlO2 A 1 txlO2 
cm. dynes sec. cm. dynes sec. 

cm. cm. 

0 (.87) — — — — — —  (.84) — — — — — 

1 .862 56.4 .86 .964 45.6 .87 

2 .930 51.5 1.30 1.026 43.0 1.36 

3 .975 48.8 1.75 1.071 41.0 1.85 

4 1.006 47.2 2.20 1.098 40.1 2.34 

5 1.034 45.7 2.64 1.122 39.2 2.80 

6 1.054 44.8 3.06 1.139 38.9 3.25 

7 1.072 44.0 3.45 1.153 38.5 3.69 

8 1.086 43.6 3.87 1.167 38.2 4.12 

9 1.098 43.2 4.30 1.180 37.8 4.57 

10 1.110 42.8 4.71 1.192 37.5 4.98 



www.manaraa.com

96 

72 

68 

64 

ARESKAP 100 

z 56 

tz> 

1.2992 

44 

40 

36 

32 
.01 .03 .02 .04 .05 

AGE 0F SURFACE (SECONDS) 

Figure 13. Dependence of surface tension of Areskap 100 
solutions on time 
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7. Dynamic surface tensions: Santomerse D 

(v0 = 233.0 cm./sec.) 

Concentration 

0.2923 g./l. 0.5846 g./l. 1.1691 g./l. 
V txlO2 * y txlO2 A y txlO2 

cm. dynes sec. cm. dynes sec. cm. dynes sec. 

cm. cm. cm. 

( .69) (.67) ( .66) 

.755 70.8 0.74 .762 69.3 0.73 .818 60.9 0.73 

.778 71.2 1.13 .787 69.4 1.13 .863 59.2 1.17 

.790 71.4 1.52 .809 68.3 1.52 .896 56.7 1.59 

.800 71.6 1.88 .828 67.2 1.88 .921 55-2 2.02 
O
s
 O
 

00 
71.5 2.25 .843 66.2 2.28 .940 54.4 2.42 

.817 71.5 2.58 .853 66.1 2.63 .954 53.8 2.81 

.825 71.2 2.92 .862 65.7 2.97 .967 53.2 3.20 

.831 71.2 3.25 .871 65-2 3.32 .978 52.8 3.57 

.837 71.1 3-56 .879 64.9 3.64 

.843 70.8 3.88 .889 64.5 3.98 

.847 70.8 4.21 
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Table 7. (Continued) 

Wave Concentration 
no. " 

2.3382 g./l. 4.6764 g./l. 9-3529 g./l. 

A y txio2 ^ y txio2 a y txio2 
cm. dynes sec. cm. dynes sec. cm. dynes sec. 

cm. cm. cm. 

0 (. 77) —  —  —  —  —  —  (.87) — *  —  —  — —  (.54) — — — 

1 . 938 47.8 0.84 1.035 40. 0 0.89 1.080 37.5 1. 00 

2 • 992 45.5 1.30 1.085 38. 7 1.43 1.121 36.7 1. 54 

3 1. 029 44.3 1.79 1.117 38. 1 1.93 1.147 36.4 2. 07 

4 1. 055 43.2 2.26 1.138 37. 7 2.44 1.167 36.2 2. 56 

5 1. 074 42.6 2.70 1.152 37. 4 2.92 1.183 35.7 3. 04 

6 1. 092 41.9 3-14 1.164 37. 4 3.37 1.196 35.8 3. 52 

7 1. 109 41.5 3.56 1.176 37. 4 3.81 1.205 35.7 3. 95 

8 1. 124 40.9 3-97 1.187 37. 2 4.25 1.214 35.7 4. 42 

9 1. 139 40.5 4.41 1.198 36. 9 4.68 1.222 35-6 4. 86 
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Figure 14. Dependence of surface tension of Santomerse D 
solutions on time 
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100 

Dynamic surface tensions : trimethyldodecylammonlum 
chloride 

(vQ = 233.0 cm./sec.) 

Concentration 

1.0663 g./l. 2.1601 g./l. 

A y txlO2 A y txlO2 
cm. dynes sec. cm. dynes sec. 

cm. cm. 

(.34) (.79) 

.788 62.6 .52 .842 58.4 .83 

.807 64.2 .97 .871 58.0 1.24 

CO 
65.4 1.38 .887 58.0 1.67 

.836 65-4 1.76 

1—i 0
 

O
N
 

57.8 2.07 

CO 

65.2 2.16 .912 57.7 2.46 

.859 64.7 2.55 .922 57.4 2.84 

.867 64.7 2.88 .929 57.5 3-21 

.875 64.4 3.23 .936 57.5 3.57 

.882 64.4 3.55 .942 57.4 3.91 

.886 64.5 3.88 .947 57-5 4.29 

.894 64.0 4.23 

.894 64.7 4.56 
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(Continued) 

Concentration 

3.0466 g./l. 4.3202 g./l. 

v txio2  ̂ y txio2 
cm. dynes sec. cm. dynes sec. 

cm. cm. 

(.42) 

.884 

.902 

.917 

.932 

.944 

.955 

.965 

.974 

.982 

.990 

.997 

52.2  

53.4 

53.9 

53-9 

53.8 

53.4 

53-3 

53-2 

52.9 

52.7 

52.6 

.61 

1.09 

1.53 

1.96 

2.39 

2.77 

3.17 

3.54 

3.89 

4.27 

4.63 

(.84) 

.931 

.953 

.972 

.986 

.997 

1.006 

1.014 

1.021 

1.028 

1.031 

48.4 

49.2 

49.3 

49.1 

49.0 

49.0 

49.0 

49.0 

49.0 

49.3 

.70 

1.32 

1.78 

2.23 

2.64 

3.05 

3.44 

3-83 

4.22 

4.60 
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Figure 15. Dependence of surface tension of trimethyl-
dodecylammonium chloride solutions on time 
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Table 9. Equilibrium surface tensions 

Surface 
active 
material 

Cone, 
g./l. 

Equilibrium 
surface 
tension 
dynes/cm. 

Comments 

Areskap 5.1970 31.9 Constant for 2 days 

2.5985 31.9 Constant for 2 days 

1.2992 31.2 Constant for 2 days 

0.6495 31.4 Over period of 6 days 
dropned from 33.9, 
constant for 3 days 

0.3248 34.0 Over period of 3 days 
dropped from 35.6, 
constant for 1 day 

Santomerse D 9.3529 33.0 

4.6764 33.0 Constant over 3 days 

2.3382 32.0 Constant over 3 days 

1.1691 29.5 Over period of 3 days 
dropped from 30, 
constant for 2 days 

0.5846 29.0 Over period of 5 days 
dropped from 33, 
dropped 1 dyne/em. 
in last 2 days 

0.2923 32.2 Over 3 days dropped 
from 37.6 
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Table 9. (Continued) 

Surface 
active 
material 

Cone. 
g«/l* 

Equilibrium 
surface 
tension 
dynes/cm. 

Comments 

Trimethyl-
dodecyl 
ammonium 
chloride 

4.3202 

3-588 

34.5 

36.4 

Average of readings 
from 16-40 hours ; 
range 1.6 dynes/cm. 

Average of readings 
from 16-24 hours ; 
range, 1.5 

2.1326 37.2 Average of 7 readings 
range, 1 dyne/cm. 

1.0663 40.6 Average of reading 
from 16-24 hours; 
range less than 1 
dyne/cm. 

Wetting Times 

Dependence of canvas disc vetting times on concentration 

for aqueous solutions of Areskap 100, Santomerse D, and 

trimethyldodecylammonium chloride is presented in Table 10 

and Figure 16. 
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Table 10. Wetting times for solutions studied 

Surface active 
agent 

Concentration 
g./l. 

Wetting time 
sec. 

Standard 
deviation' 

sec. 

Areskap 100 0.3248 397.8 18.0 

0.6496 86.8 19.0 

1.2992 23.3 4.3 

2.5985 8.4 2.4 

5.1970 5.0 0.9 

Santomerse D 0 . 29 23 594.8 92.6 

0.5846 99.6 24.0 

1.1691 15.9 2.3 

2.3382 5.0 0.6 

4.6764 2.7 0.7 

9-3529 2.0 0.9 

Trimethyldodecyl­ 1.0663 1233 275 
ammonium 
chloride 2.1326 926 128 

3.0466 849 122 

4.3202 518 134 

aEach standard deviation was based on eight measurements 
of the wetting time. 
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DISCUSSION 

Dynamic Surface Tensions 

Trimethyldodecylammonium chloride 

Solutions of trimethyldodecylammonium chloride showed 

very little or no change in surface tension over the period 

of time measured. This is very different from the results 

obtained when solutions of Areskap and Santomeree D were used. 

The observed surface tensions were lower than that for pure 

water but much above the equilibrium values. 

Because the changes in surface tension were so small, 

the data would not make a very sensitive test of the rate 

laws and no tests were performed. 

An observation may help to explain the low initial values 

for surface tension. Before each test the entire glass reser­

voir and supply system in the apparatus was cleaned with hot 

chromic acid cleaning solution. This process was continued 

until the cleaning solution drained in sheets from the surface 

and did not "break11 across the surface. Glassware treated in 

this way tested clean with distilled water ae well as with the 

cleaning solution. However, as soon as trimethyldodecylammoni­

um chloride solution was placed In the glassware, the liquid 
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film broke and did not drain in a sheet. In other words the 

surface appeared to be greasy. 

Trimethyldodecylammonium chloride is a cationic agent; 

that is, it is the cation which ie adsorbed on the surface. 

Ordinarily a surface active agent would orient itself to place 

the hydrophillc part In the water and tend to remove the 

hydrophobic part from the solution. However, as the catidnic 

surface active ions are adsorbed on glass, the orientation ie 

apparently such that the charged end of the ion is towards 

the glass. This preferred orientation can be explained in 

either of two ways. 

Glass is made up of a network of silicate ions. At the 

surface of glass where there ie a break in the silicon-oxygen 

network, oxygen atoms are exposed with unsatisfied valences, 

making the surface slightly acidic. The surface oxygen atoms 

would tend to attract either hydrogen from water or any posi­

tive ion. Adsorption on glass of positive dye ions was 

reported by Eltel (23b). 

On the other hand, it is possible that there is cation 

exchange between sodium ions on the surface of the glass and 

the cations from the surface active agent. The base exchange 

properties of clays are well known and it is reasonable to 

expect corresponding behavior from the silicates in glass. 

In either case the hydrophillc part of the ion would be 

oriented toward the glass, leaving the hydrophobic end of the 
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Ion exposed to the solution. The aqueous solution is not 

attracted to the hydrophobic covering on the glass and thus 

does not wet it. 

As the solution flows through tubing coated in this way, 

a second layer of molecules orient at the surface, and the 

orientation in this case is with the hydrophobic end out and 

the hydrophillc in. This layer is not held by the glass sur­

face nor by the previously adsorbed agent on the glass but it 

travels along with the stream. As a result diffusion to the 

surface, orientation in the surface, and decrease In surface 

tension can take place before the stream issues from the ori­

fice. In effect the surface has aged to some unknown extent 

before it reaches the orifice. This would account in part for 

the low initial values for surface tension. 

Furthermore, slip between the solution and the glass and 

metal tubes would result in a finite surface velocity at zero 

age instead of zero velocity as assumed. A finite surface 

velocity would give rise to wave lengths which are longer 

than expected and as a consequence the surface tension would 

appear to be less than it actually is. 

Areskap 100 and Santomerse D 

Two widely accepted rate laws 
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y _ r. 
C - it 

e - « t and 

z- fi oo 
fn - ra 

= e -* /tT 

have been discussed by earlier authors (13-15, 21, 22, 56, 57)• 

The data for Areskap 100 and Santomerse D were used to test 

these laws in the following forms. 

log ( Y - ) - log ( / o - loe ) ~ ~ 2 j * 

log { t - /<» ) - log ( T q - X# ) - - 2̂ 3 ft 

The results using the first equation are given in Figures 17 

and IS. It is seen that for solutions of both surface active 

agents the points for the two lower concentrations fall very 

nearly on straight lines but at higher concentrations there Is 

considerable curvature in the lines through the points. 

Figures 19 and 20 show the test of the second law. All 

the points in these graphs fall on or near the appropriate 

straight lines. At the higher concentrations in most cases 

the first and last point or two do not lie on the line. This 

is not surprising as the first points measured on the pure 

liquids were often slightly in error and it is to be expected 
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Figure 17. Variation of surface tension with time : 
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that similar errors in measurement would occur when the 

solutions were tested. Furthermore, any error in y would 

cause a larger percent error in the term Y - when higher 

concentrations, and thus lower surface tensions, are involved. 

Therefore small errors in the first measurements of the surface 

tension would be more apparent on the more concentrated solu­

tions. Although the errors in y at the higher ages would be 

expected to be small, the y - )̂ > error would be much greater 

on a percentage basis, and this error would be more apparent 

as Y approached In value, that is, as the age of the 

surface increased. 

It has been suggested by other authors that in a dilute 

solution the instant a new surface is formed it is so bare of 

solute molecules that the surface tension is essentially that 

of water. If this is the case, the term % would be 72.0 

dynes/cm. for work done at 25° C, and for all solutions having 

the same equilibrium surface tension, >o - Yw would be the 

same. If this is true, all the lines for solutions having the 

same should meet in a point at the ordinate. For Areskap 

all the solutions tested except the most dilute showed approxi­

mately the same yw . Furthermore for Santomerse D the higher 

solutions all had the same . However, the lines for these 

solutions not only do not meet but for the higher concentra­

tions they are parallel or nearly so. 
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Although the plot of log ( / - ) vs. j/"t* is a 

straight line, It cannot be said that these data fit the 

second of the two laws given. For the data to fit, not only 

should the points fall on straight lines but the intercept 

of all the lines must be such that Y, is 72 dynes/cm. It ie 

very apparent that this last condition is not met. 

Although several authors (13, 22, 42, 54, 57) have sug­

gested that adsorption from solution, and thus lowering of 

surface tension, is diffusion controlled, no one has presented 

a theory which is fitted by experimental data. The lack of 

agreement in the past has resulted from incorrect values for 

the surface tension and age of the surface and from Inadequate 

theories. 

In the present work the difficulties which caused others 

to obtain incorrect dynamic surface tensions have been remedied. 

Thus it should now be possible to develop a theory which will 

satisfactorily account for the lowering of the surface tension. 

From the present work it is seen that log ( Y - Y*. ), or 

log (T0 - Y ), depends on l/~t. It Is further observed that 

for concentrations less than about three grams/liter, the 

effect of doubling the concentration Is to increase the slope 

of the plot of log it - Kco ) vs. |/~t by a factor of about 

four. In other words below the critical micelle concentration 

the slope depends approximately on the square of the concen­

tration. Above that point there must be some representation 
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showing dependence of the rate of change of surface tension 

on the concentration in excess of that required for formation 

of micelles. 

In diffusion-controlled adsorption, Sutherland (5*0 has 

shown that, if the adsorption isotherm is of Henry's Law form 

and the surface is in instantaneous equilibrium with the 

subsurface, then 

where c (0,t) is the concentration in the subsurface at any 

time, 

D is the diffusion constant. 

In effect this treatment can be approached by considering 

an adsorption isotherm in which the concentration is that of 

the subsurface and is time dependent. The instant the new 

surface is formed, solute molecules pass into the surface, 

leaving the subsurface depleted of solute. As the surface 

ages, solute particles diffuse from the bulk into the sub­

surface, the process continuing until the concentrations of the 

erfc x and x = |fDt/M . 

M is the Henry's Law constant, such that P= Mc at equilibrium 

and at any time J™* ( t ) = Mc(0,t). P is the surface excess and 
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subsurface and the bulk solution are the same. In this repre­

sentation M is the slope of the adsorption isotherm. 

Now if M is not constant (and it is not in this represen­

tation) , the diffusion problem is non-linear, and no one has 

been able to solve the diffusion-adsorption problem for any 

non-linear boundary condition. 

A treatment correct in order of magnitude should be ex­

pected to result if the mean slope of the adsorption isotherm 

between c equal to zero and c equal to the equilibrium subsur­

face concentration is used. If then the detergent adsorption 

satisfies Langmuir1 s equation, for concentrations below the 

critical micelle concentration (c < c0) one would have 

r - r a° 
' 1 m 1 + ac 

where Pm is the surface excess required for a monomolecular 

layer. The chord between the points (0,0) and ( /"*,c) would 

have the slope (a Tm)/(l + ac) and this would also be the 

mean slope over the range. 

The Langmuir relation is an oversimplified representation 

of detergent adsorption due to interaction and orientation 

effects, but it is much less oversimplified than a Henry's Law 

relation. 

At equilibrium, if detergent adsorption follows the 

Langmuir equation, then 
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Ya - y CO - rmRT In (1 + ao) 

and if surface and subsurface are in instantaneous equilibrium 

we expect 

r, - y = f> m fi * ac(o,t)~] 

= rmRT m [l f acG(x) ] 

where G(x) - 1 - ex̂  erfc x and x = l/Dt/M. If we take M, 

the mean slope, equal to (a r*m)/(l + ac), then 

x = Vf̂  VDi. a I m 

Hence 

y. - y 
10 - 1 = ac G{x) 

where A - 2.303 f̂ RT. For small values of x, G(x) % 1.13x 

1.13̂  V lTï)t . Therefore, for small t, 
a / m 

To - Y 

10 A - 1 = 1.13 0 a0̂  V™Dt , 
I m 

In other words the left hand side of the equation should vary-

as Ift for fixed c and small t with a slope, if ac ?> 1, which 
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2 ie proportional to c . Substantially this is the behavior 

shown by data from this study. 

A better fit of the data can be obtained if M is taken 

as the average slope over the part of the isotherm which 

corresponds to the period of observation. The slope of such 

a line is represented by 

r T» ~ Yf 

1 /acîo.T)' "here ac(o''6 ' = 10 A -i-

( X = 0.04 seconds) Thus 

r. - t t  
7. -Y = i° L. l/Dt 

& /m 

For concentrations above the critical micelle concentra­

tion (c > c0), the micelles serve as a source of material in 

the solution. The micelles are colloidal particles which do 

not diffuse but which dissolve to maintain the concentration 

of single particles at c0. The problem of diffusion from a 

detergent solution above the critical micelle concentration 

into pure solvent, both the solvent and solution being taken 

as infinite in extent, is mathematically equivalent to the 

problem of heat conduction when a semi-infinite solid below 

its melting point is placed in contact with a semi-infinite 

liquid above the melting point. Although a solution has been 
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given for the heat conduction problem (19b), no source problem 

involving adsorption at a surface has been solved. 

Because only single species adsorbed on the surface affect 

surface tension, for concentrations above the critical micelle 

concentration (c0), 

= [> in (X * ao0). 

In an attempt to maintain cQ, micelles in the subsurface will 

dissociate immediately after a new surface is formed. Because 

the micelles do not diffuse, the subsurface never regains any 

micelles. It is assumed, as before, that 

io - / 

10 A - 1 = ac(0,t) , 

but for solutions above the critical micelle concentration, 

c(0,t) will depend not only on the diffusion constant (D), the 

age of the surface (t), and the shape of the isotherm (M), but 

also on the critical micelle concentration and the extent to 

which it is exceeded. The dependence can be expressed as 

c(0,t) = c
0 F(D, t, M, c - cQ), for c > cQ. 

The function F must be of the form that 
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F —» 0 as t —» 0 

F —> 1 as t —» 00 

F —> G as o - c0 —> 0 

From a comparison of the present problem with the melting 

problem previously cited, a form of F which satisfies the 

conditions is 

Other forms of F are possible but were not tested as this 

one gave satisfactory results. 

Data from this work were used to test the adequacy of the 

theory presented. The steps involved are as follows : 

1. Determine a value of A. If the molecular dimensions 

F 

where K is now 

1 + aco(0,T) * 

are known, A can be obtained by calculation 

(A = 2.303 fmRT = 2.30?RT 

where (X is the molecular area). Alternately the 

value of A is obtained by trial and error to be such 

that 



www.manaraa.com

123 

to - Y 

10 5 - 1 

varies linearly with t& for very small values of t. 

The latter method was used in this work to obtain a 

value of 30 for A for both Areskap and Santomerse D 

Determine the value of a. At equilibrium 

Yo -Y 
10 A - 1 = ac for c < cQ or 

r0 -r 

10  ̂ - 1 - acQ for c > c0. 

The value of a was established from experimental 

Y (c0) to be 6.84 liters/gram for Areskap and 6.33 

for Santomerse D. 

Evaluate G-(x). For c < cQ, 

Yo -r 
S(x) = 10 A - 1- . 

ac 

For c ) c0, 

Yo - y 

OU) = X° ac0 

Evaluate x from G-(x). G-(x) = 1 - ex̂  erfc x. 

Calculate JQ ̂  as 
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IV i X 
= /O " Y* 

t* 10 A 

6. Calculate D = jQ ( F̂ a)̂ . Pffla is calculated from its 

equivalent 'Jrj * a * 1000 cm.3/1. • molecular 

weight. The value of f̂ a for Areskap Is 1.171 x 10"̂  

cm. and for Santomerse D It Is 1.06 x 10"̂  cm. The 

values of D In cm.2/sec. are 

Areskap 

0.65 g./l. 1.22 x ID"? 

1.30 g./l. 2.81 x 10-7 

2.6 g./l. 1.33 x 10-7 

5.2 g./l. 2.22 x 10-7 

av. 1.90 x 10-7 

Santomerse D 

0.58 g./l. 3.58 x ID"7 

1.17 g./l. 5.75 x 10~7 

2.34 g./l. 3.84 x 10-7 

4.68 g./l. 4.77 x 10-7 

9.35 g./l. 8.36 x ID"7 

av. 5.26 x 10-7 
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7. For solutions above the critical micelle concentra­

tion a factor k must be determined which shows the 

effectiveness of the micelles in decreasing the 

surface tension 

r 4 - ^. o4 -I 
x = I 10 A * + k( c - C0 ) /1* . 

The value of k was determined from an average value 

for x/t& for measurements at each concentration. For 

the two solutions of Santomerse D above the critical 

micelle concentration the values of k obtained are 

1.07 and 1.01. Only one solution of Areskap was above 

the critical micelle concentration; for it k is 0.77. 

The adequacy of the theory can be tested in two ways. If 

the slope of the isotherm is closely approximated by 

y0 - Xt: 
10 5 , 

then D should be a constant for all times t and for all con­

centrations of an agent. Values of D were reasonably constant 

within each concentration of Santomerse D tested. For low 

concentrations the value of D increased with t but for the 

concentrations above c0 there was a slight decrease in D with 

t. 
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Values of D for Areskap showed somewhat more variation 

than the corresponding data for Santomerse D. Apparently 

y0 -

A 

Is a poorer estimate of the slope of the isotherm for Areskap 

than for Santomerse D. For all concentrations tested the 

value of D increased with time, although the percent change 

decreased as the concentration increased. The variation in 

the average D from one concentration to another did not show 

any trend. 

The second measure of the adequacy of the theory comes 

from a comparison of D, the diffusion coefficient, obtained 

by these calculations with accepted values. No values for 

the diffusion coefficient for the compounds tested could be 

found in the literature. However, in general, the diffusion 

coefficients range from 10"*® to 10"̂  cm.̂ /sec. By this stand­

ard the calculated values are somewhat low but are certainly 

of the proper order. 

Consideration of the two tests indicates that the data 

fit the theoretical presentation and that the adsorption is 

diffusion controlled. Use of the mean slope for the adsorption 

isotherm, rather than the isotherm itself, in evaluating M 

yields values for M which are too low at small ages and too 

high for longer times. A better estimate of M, which follows 
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the isotherm more closely than the mean slope, would no doubt 

give more constant values of D with t for each concentration. 

The agreement between the theoretical lines based on the 

calculated diffusion constants and the experimental data is 

shown in Figures 21 and 22. The agreement between the lines 

and the experimental data for Santomerse is very good. For 

the Areskap data the theoretical lines have a lower slope than 

is indicated by the experimental points. 

Equilibrium Surface Tensions 

Measurement of the surface tension of the more concen­

trated solutions of Areskap and Santomerse D gave practically 

constant values over a period of time. However, for the more 

dilute solutions considerable time was needed to reach equilib­

rium. For example, the surface tension of the three highest 

concentrations of both Areskap and Santomerse D was constant 

with time and measurements showed good agreement with each 

other. For the lower concentrations the first values obtained 

were measurably different from the equilibrium value. Measure­

ments were made over several days to be sure that true 

equilibrium had been reached. 

A further difficulty appeared in measuring equilibrium 

tensions of the trimethyldodeoylammonium chloride solutions. 

The value obtained was dependent on the rate at which the ring 
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Figure 21. Comparison of theoretical lines and experimental 
points for the surface tension of Santomerse D 
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was raised. If the ring was lifted quickly, the values ob­

tained were higher than if the ring was raised more slowly or 

if the ring was raised part way and allowed to stand in that 

position for a time before the ring was finally pulled away. 

As the ring is raised, new surface is formed, and the new 

surface is initially low in surface active agent. If solute 

ions diffuse to the surface rapidly, formation of new surface 

would not cause the observed surface tension to be appreciably 

higher than the true equilibrium value; however, for other 

solutes true equilibrium values might not be obtained in this 

way unless the ring were raised extremely slowly. 

Because of this difficulty the values obtained for the 

equilibrium surface tension for trimethyldodecylammonlum 

chloride may be biased by a small amount. However, formation 

of the new surface in measuring equilibrium surface tensions 

of solutions of the other surface active agents did not cause 

noticeable increase in surface tension. 

One measure of the purity of a surface active agent is 

the effect of dilution on the equilibrium surface tension. If 

a single surface active material is present, no minimum is 

observed -in the surface tension-concentration curve, but If 

a more strongly adsorbed agent is present as an Impurity, it 

also will be adsorbed and will lower the surface tension below 

that for the pure compound. 
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It le probable that neither the Santomerse D nor the 

Areskap was a single agent. Neither material could be purified 

by recrystallization. In the manufacture of Santomerse D 

several isomers are formed. Furthermore, long chain alcohols 

are likely to be present as a result of side reactions. The 

extent of impurity in the Areskap was evidently small, as the 

minimum surface tension was less than one dyne/cm. below that 

for more concentrated solutions. There was apparently more 

impurity in the Santomerse D as the minimum in this case was 

four dynes/cm. below the surface tension of the more concen­

trated solutions. 

Sinking Time Teste 

Fabric sinks in a liquid when the liquid advances into 

the capillary spaces to a great enough distance to increase 

the bulk density of the fabric above that of the liquid. If 

d is the average distance to which the liquid must penetrate 

the capillary before sinking occurs, then 

where t8 is the sinking time and v is the average velocity of 

the liquid travelling into the capillaries. 
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For uniform motion of the liquid front, the net force 

acting on the front must be zero. This ie true when the sur­

face forces acting to move the liquid are Just equal to the 

viscous drag, which in turn is proportional to the velocity 

of the moving front. The surface force is given by Yg -

V2L - /̂ cos 6 where Y g is the surface tension of the fibers 

in the fabric, is the fiber-liquid interfacial tension, 

ie the surface tension of the liquid, and Ô is the con­

tact angle. 

The above expression can be rewritten in terms of the 

pure solvent and changes in surface tension from that of the 

pure solvent. 

Yg - Tgjj - V l 008 - Yg -(fsL - A ̂  gjj( t) ) - (/jjCoŝ  - 4 Y t)cos d ) 

= AT0 + A ̂ SL(t) + A YL( t) cos 5 (2) 

The three terms involving the pure substances are collected 

in A Y o. and &Ŷ  are the decreases in in ter facial 

and surface tensions which result in time t from addition of 

surface active agent to the solvent. In summary 

v = K(viscous drag) = K(surface forces) 

= K( AY° + A Y sL(t) t û Ï L(t)co86) (3) 
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From the work of Bartell and others (8a, 39) it is assumed 

that the changes in surface and interfacial tensions are pro­

portional to each other. If A = b À Y ( t), then 

A ̂  L( t) cos G +  ̂Vgi/ t) = (b + cos©) A VL( t) = 

p A YL( t). Thus 

v = K [AY° + T̂L(t)] (4) 

The peripheral velocity given by equation (3J* depends on 

t, that Is , on the surface age ; if this were assumed to in­

crease uniformly, starting from che instant of cloth-solution 

contact, the rate of penetration should likewise increase 

uniformly.- Since the sinking times involved are all in excess 

of tvo seconds and since the surface tension depression rate 

for most solutions studied was such as to bring the surface 

tension values nearly to equilibrium in times short compared 

to this, the rate of penetration would depend principally on 

the equilibrium surface tension. However, solutions of nearly 

the same equilibrium surface tensions show marked variations 

In their rate of cloth penetration, contrary to the uniform 

aging hypothesis. The solutions behave, in the penetration 

experiments, as if their surfaces had aged for periods short 

compared to the sinking time. This behavior suggests that 

the penetration, while perhaps uniform from a macroscopic view, 

is intermittent on a microscopic scale. A plausible mechanism 
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for euch an intermittent penetration can be advanced and leade 

immediately to a quantitative theory of the sinking of oloth 

by solution penetration. 

Bartell and Shepard (8b) have shown that an apparent 

contact angle formed on a rough paraffin surface will exceed 

the true contact angle by approximately the angle between the 

asperity face and the mean plane of the surface. This result 

appears very reasonable, since the volume of liquid required 

to maintain the true contact angle on the side of the asperity 

away from the liquid source will be so great that the liquid 

will spread up the side of the next asperity immediately after 

it has reached the bottom of the first. This process ie 

illustrated in Figure 23. The spreading of the liquid will 

hence be intermittent; that ie, it will move slowly down the 

far faces of asperities and rapidly up the near ones. 

The proposed mechanism requires that the solutions make 

non-zero contact angles with the fibers and that there be 

roughness on the surface of the yarns. Fowkes (26) has shown 

that both water and detergent solutions form non-zero contact 

angles on cotton fibers. Roughness in cotton fabrics can be 

expected both from the roughness of the fibers themselves and 

also from the fact that the yarns consist of log-plle-llke 

bundles of fibers. 

For simplicity the asperities can be considered to have 

equal plane faces. If y is the length of one face, then the 
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Figure 23. Schematic diagram of liquid passing over an 
irregular surface 
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time T required for the liquid to advance down the far side 

of an asperity must satisfy the following equation 

-f 

y 
rx f t  ,  

= J v d t  = K j [ û * °  * P̂ L(t) J dt (5) 

Since T is small, and thus is small, 

r. - r 2.K - /) 
- T«. &ÛIL 10 A - 1 = e A -lit 2*̂  a9 " r ̂ • acG(x) 

Since x is also small 

where Y. _ Y.04 
Q = 10 5 

( 6 )  

G(x)£ 1.13 x = Jg *Qt* (7) 

below the critical micelle concentration and 

t- <04 
10 A + j&j (c - o0) 

when micelles are present. Hence 

AYL(t)̂  AacQfl*t* (8) 

and therefore 
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y = K jfcY't +• Aac|? 3̂ 2 (9) 

If the rate of motion up the near side of the following 

asperity is very fast, then the periphery travels a distance 

2y in timet , and the mean velocity is 

• = |* - 2K[AÎ° + 0Ô .Aae(3 (10) 

The change in order of magnitude of sinking time caused 

by addition of surface active agent Is such that the first term 

on the right must be very small compared to the second term. 

If AY* is ignored, equation (5) can be solved for X and the 

result substituted In equation (10) to obtain 

= 2y 
2/3 

(11) 

Hence 

"e e • ki/3 htifk,3acqtli] 
-2/3 

(12) 

or 

i_ = ,fr1/3 
te d 

tfi m M *  
2/3 

(13) 

For a particular surface active agent and any one fabric 

the only variables in the last term are the concentration and Q. 
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If all the constants are combined into one, K1, and X is sub­

stituted for cQ, equation (13) becomes 

A. = K'X2/3 . (14) 
Ts 

Hence a plot of l/t8 against should be linear. The 

general correctness of this conclusion is illustrated in 

Figure 24. 

By similar reasoning the sinking time In pure solvent 

should be 

o _ d _ df _ _d_ . y _ — f1 «.x 
*s - ? - 2y ~ 2y K AY° ~ 2K AY0  U5)  

The success of the theory presented suggests that adsorp­

tion at solution-cloth and eolutlon-alr interfaces are kinetl-

cally similar (since the theory includes the assumption that 

the boundary tension depressions at these interfaces were 

proportional at any time). Both processes hence must proceed 

by similar rate-limiting mechanisms, and from the treatment 

found to be successful in representing detailed kinetic data 

for adsorption at the water-air interface it appears that the 

slow step in both processes is diffusion of surface active 

agent to the interface. 
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Figure 24. Dependence of sinking time on generalized coordinate X 
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SUMMARY 

The principles involved in the determination of dy­

namic surface tensions by the vibrating Jet method 

have been examined. Previous methods for calculation 

of surface tensions and surface ages are shown to be 

inaccurate and fundamentally erroneous. An accurate 

theory appropriate for these calculations was 

developed in collaboration with other workers in 

this laboratory and its validity demonstrated 

experimentally. 

The corrected vibrating Jet method has been applied 

to the determination of the dependence of surface 

tension on surface age and bulk concentration for 

aqueous solutions of trimethyldodecylammonium 

chloride, Santomerse D, and Areskap 100. An approxi­

mate theory based on the assumption of diffusion-

controlled adsorption was developed and shown to 

furnish a reasonably satisfactory representation of 

the observed data. 

Sinking times as determined in the canvas disc wetting 

test have been measured as functions of concentration 

for aqueous solutions of these same surface active 

agents. A theory was presented relating sinking times 
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to rates of surface tension depression. The success 

of this theory In representing observed data suggests 

that the penetration of liquid Into cloth is inter­

mittent and that the adsorption of agent at the cloth-

solution interface is also diffusion-controlled. 
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